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a previous extension of the order, a fork is 
created.
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FLOODING FOR NSBS

‣ Any message input at time  must be delivered 
before time .

‣ Assumed to prove NSBs secure 
[GKL15,GKL17,PSs17,DGKR18].
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For each party, three additional commands: 

‣ Precorrupt: Time for precorruption is noted. 

‣ Corrupt: Checks if current time is at least  time after precorruption and 

otherwise ignores input.

δ

‣ (Initialize, ): If given as the first command, the precorruption time is 

updated to be .

τ

τ
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Theorem 1. Security against a byzantine adversary implies 
security against a 0-delayed adversary.

Theorem 2. Security against a fast adversary implies 
security against a slow adversary.
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Theorem 3. The protocol  implements a flooding network against an 
adversary that is delayed for the time it takes to send plus the time it takes to resend 
with either:

1.  neighborhood and a diameter of 2.

2.  neighborhood and a logarithmic diameter.

πERFlood

Ω( κ ⋅ n)

Ω(κ)
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‣ Delayed Adversary: 
‣ It takes  time from an adversary 

decides to corrupt a party, to control of 
the party is given to the adversary.

Δ + σ

t + σ

Possible to corrupt sender 
and prevent delivery.

t + Δ + σ

Min. corruption delay.

t

Message is 
immediately leaked.

t + Δ Latest delivery of message.
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Adversary has not initiated the corruption.
t

t + Δ′ Latest delivery of message.

Message is 
immediately leaked.
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2.  and .
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Flood

Fσ,Δ
MT (σ + Δ)

ρ =
κ
h

Δ′ = 2 ⋅ Δ

ρ =
κ
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Δ′ = 𝒪(Δ ⋅ log( n
κ ))

56

 = security parameter.
 = number of parties guaranteed to be honest.
 = number of parties in total.

κ
h
n

MAIN RESULT



CONCLUSION
‣ Formal model for -delayed adversaries within UC.δ

57

SØREN ELLER THOMSEN
AUGUST 2022 PHD. STUDENT

DEPARTMENT OF COMPUTER SCIENCE

AARHUS
UNIVERSITY

https://eprint.iacr.org/2022/010
mailto:sethomsen@cs.au.dk


CONCLUSION
‣ Formal model for -delayed adversaries within UC.δ

‣ Two instantiations of a flooding network secure against adaptive adversaries:

57

SØREN ELLER THOMSEN
AUGUST 2022 PHD. STUDENT

DEPARTMENT OF COMPUTER SCIENCE

AARHUS
UNIVERSITY

https://eprint.iacr.org/2022/010
mailto:sethomsen@cs.au.dk


CONCLUSION
‣ Formal model for -delayed adversaries within UC.δ

‣ Two instantiations of a flooding network secure against adaptive adversaries:
‣ One with a constant neighborhood and logarithmic diameter.

57

SØREN ELLER THOMSEN
AUGUST 2022 PHD. STUDENT

DEPARTMENT OF COMPUTER SCIENCE

AARHUS
UNIVERSITY

https://eprint.iacr.org/2022/010
mailto:sethomsen@cs.au.dk


CONCLUSION
‣ Formal model for -delayed adversaries within UC.δ

‣ Two instantiations of a flooding network secure against adaptive adversaries:
‣ One with a constant neighborhood and logarithmic diameter.
‣ One with a squareroot neighborhood and constant diameter.

57

SØREN ELLER THOMSEN
AUGUST 2022 PHD. STUDENT

DEPARTMENT OF COMPUTER SCIENCE

AARHUS
UNIVERSITY

https://eprint.iacr.org/2022/010
mailto:sethomsen@cs.au.dk


CONCLUSION
‣ Formal model for -delayed adversaries within UC.δ

‣ Two instantiations of a flooding network secure against adaptive adversaries:
‣ One with a constant neighborhood and logarithmic diameter.
‣ One with a squareroot neighborhood and constant diameter.

‣ Details: https://eprint.iacr.org/2022/010.

57

SØREN ELLER THOMSEN
AUGUST 2022 PHD. STUDENT

DEPARTMENT OF COMPUTER SCIENCE

AARHUS
UNIVERSITY

https://eprint.iacr.org/2022/010
mailto:sethomsen@cs.au.dk


CONCLUSION
‣ Formal model for -delayed adversaries within UC.δ

‣ Two instantiations of a flooding network secure against adaptive adversaries:
‣ One with a constant neighborhood and logarithmic diameter.
‣ One with a squareroot neighborhood and constant diameter.

‣ Details: https://eprint.iacr.org/2022/010.

‣ Contact: sethomsen@cs.au.dk.

57

SØREN ELLER THOMSEN
AUGUST 2022 PHD. STUDENT

DEPARTMENT OF COMPUTER SCIENCE

AARHUS
UNIVERSITY

https://eprint.iacr.org/2022/010
mailto:sethomsen@cs.au.dk


58

 

The Hybrid World

The Ideal World

PROOF IDEA UC

‘



58

 

The Hybrid World

The Ideal World

PROOF IDEA UC

Sufficient to bound 
probability for late delivery!

‘



DYNAMIC SIZE IS AN ADVANTAGE

59

P1

P2

P4

P6

P5

P8

P3

P7



GAME-HOPS

60

Output



REFERENCES
[GKL15]: Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone protocol: Analysis and 
applications. In Elisabeth Oswald and Marc Fischlin, editors, EUROCRYPT 2015, Part II, volume 9057 of LNCS, pages 
281–310, Sofia, Bulgaria, April 26–30, 2015. Springer, Heidelberg, Germany.
[GKL17]: Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone protocol with chains of variable 
difficulty. In Jonathan Katz and Hovav Shacham, editors, CRYPTO 2017, Part I, volume 10401 of LNCS, pages 291–
323, Santa Barbara, CA, USA, August 20–24, 2017. Springer, Heidelberg, Germany. 
[PSs17]: Rafael Pass, Lior Seeman, and abhi shelat. Analysis of the blockchain protocol in asynchronous networks. In 
Jean-Sébastien Coron and Jesper Buus Nielsen, editors, EUROCRYPT 2017, Part II, volume 10211 of LNCS, pages 
643–673, Paris, France, April 30 – May 4, 2017. Springer, Heidelberg, Germany.
[PS17]: Rafael Pass and Elaine Shi. Hybrid consensus: Efficient consensus in the permissionless model. In Andréa W. 
Richa, editor, 31st International Symposium on Distributed Computing, DISC 2017, October 16-20, 2017, Vienna, 
Austria, volume 91 of LIPIcs, pages 39:1–39:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017.
[DGKR18]: Bernardo David, Peter Gazi, Aggelos Kiayias, and Alexander Russell. Ouroboros praos: An adaptively-
secure, semi-synchronous proof-of-stake blockchain. In Jes- per Buus Nielsen and Vincent Rijmen, editors, 
EUROCRYPT 2018, Part II, volume 10821 of LNCS, pages 66–98, Tel Aviv, Israel, April 29 – May 3, 2018. Springer, 
Heidelberg, Germany.
[BDDNO21]: Carsten Baum, Bernardo David, Rafael Dowsley, Jesper Buus Nielsen, and Sabine Oechsner. TARDIS: A 
foundation of time-lock puzzles in UC. In EUROCRYPT (3), volume 12698 of Lecture Notes in Computer Science, 
pages 429–459. Springer, 2021.

61


