
DEPARTMENT OF COMPUTER SCIENCE

AARHUS
UNIVERSITY AUGUST 2022 PHD. STUDENT

SØREN ELLER THOMSEN

FORMALIZING DELAYED ADAPTIVE
CORRUPTIONS AND THE SECURITY
OF FLOODING NETWORKS
Christian Matt, Concordium
Søren Eller Thomsen, Aarhus University
Jesper Buus Nielsen, Aarhus University

NAKAMOTO-STYLE BLOCKCHAINS

2

Alice

Bob
Charlie

Dorothy

😈

Mallory

NAKAMOTO-STYLE BLOCKCHAINS

2

Alice

Bob
Charlie

Dorothy

😈

Mallory

‣ Parties build a total order using a lottery.

NAKAMOTO-STYLE BLOCKCHAINS

3

A

Alice

Bob
Charlie

Dorothy

😈

Mallory

‣ Parties build a total order using a lottery.

NAKAMOTO-STYLE BLOCKCHAINS

3

A

B

Alice

Bob
Charlie

Dorothy

😈

Mallory

‣ Parties build a total order using a lottery.

NAKAMOTO-STYLE BLOCKCHAINS

3

A

C

B

Alice

Bob
Charlie

Dorothy

😈

Mallory

‣ Parties build a total order using a lottery.

NAKAMOTO-STYLE BLOCKCHAINS

3

A

C

D

B

Alice

Bob
Charlie

Dorothy

😈

Mallory

‣ Parties build a total order using a lottery.

NAKAMOTO-STYLE BLOCKCHAINS

4

A

C

D

B

Alice

Bob
Charlie

Dorothy

😈

Mallory

‣ Parties build a total order using a lottery.

‣ If a party wins the lottery without knowing about
a previous extension of the order, a fork is
created.

NAKAMOTO-STYLE BLOCKCHAINS

5

A

D

B

C

Alice

Bob
Charlie

Dorothy

😈

Mallory

‣ Parties build a total order using a lottery.

‣ If a party wins the lottery without knowing about
a previous extension of the order, a fork is
created.

NAKAMOTO-STYLE BLOCKCHAINS

6

A

D

B

C

Alice

Bob
Charlie

Dorothy

😈

Mallory

‣ Parties build a total order using a lottery.

‣ If a party wins the lottery without knowing about
a previous extension of the order, a fork is
created.

‣ Adversaries can also create forks.

NAKAMOTO-STYLE BLOCKCHAINS

7

A

C M

‣ Parties build a total order using a lottery.

‣ If a party wins the lottery without knowing about
a previous extension of the order, a fork is
created.

‣ Adversaries can also create forks.
MB

Alice

Bob
Charlie

Dorothy

😈

Mallory

NAKAMOTO-STYLE BLOCKCHAINS

7

A

C

D

M

‣ Parties build a total order using a lottery.

‣ If a party wins the lottery without knowing about
a previous extension of the order, a fork is
created.

‣ Adversaries can also create forks.
MB

Alice

Bob
Charlie

Dorothy

😈

Mallory

NAKAMOTO-STYLE BLOCKCHAINS

8

A

C

D

M

‣ Parties build a total order using a lottery.

‣ If a party wins the lottery without knowing about
a previous extension of the order, a fork is
created.

‣ Adversaries can also create forks.

‣ Isolated honest blocks must outgrow
adversarial blocks.

MB

Alice

Bob
Charlie

Dorothy

😈

Mallory

FLOODING FOR NSBS

9

FΔ
Flood

P1

P2

P3

Pn

⋮

FLOODING FOR NSBS

10

FΔ
Flood

P1

P2

P3

Pn

⋮

FLOODING FOR NSBS

‣ Any message input at time must be delivered
before time .

t
t + Δ

10

FΔ
Flood

P1

P2

P3

Pn

⋮

FLOODING FOR NSBS

‣ Any message input at time must be delivered
before time .

t
t + Δ

11

FΔ
Flood

P1

P2

P3

Pn

⋮

FLOODING FOR NSBS

‣ Any message input at time must be delivered
before time .

‣ Assumed to prove NSBs secure
[GKL15,GKL17,PSs17,DGKR18].

t
t + Δ

12

FΔ
Flood

P1

P2

P3

Pn

⋮

FLOODING FOR NSBS IN PRACTICE

13

P1

P2

P4

P6

P7

P3

P5

P8

FLOODING FOR NSBS IN PRACTICE

14

P1

P2

P4

P6

P7

P3

P5

P8

wins!
P1

FLOODING FOR NSBS IN PRACTICE

14

P1

P2

P4

P6

P7

P3

P5

P8

wins!
P1

15

P1

P2

P4

P6

P7

P3

P5

P8

wins!
P1

FLOODING FOR NSBS IN PRACTICE

16

P1

P2

P4

P6

P7

P3

P5

P8

wins!
P1

FLOODING FOR NSBS IN PRACTICE

17

P1

P2

P4

P6

P7

P3

P5

P8

wins!
P1

FLOODING FOR NSBS IN PRACTICE

18

P1

P2

P4

P6

P7

P3

P5

P8😈

wins!
P1

FLOODING WITH AN ADAPTIVE ADVERSARY
AND NON-ATOMIC MESSAGE SEND

18

P1

P2

P4

P6

P7

P3

P5

P8😈

wins!
P1

FLOODING WITH AN ADAPTIVE ADVERSARY
AND NON-ATOMIC MESSAGE SEND

18

P1

P2

P4

P6

P7

P3

P5

P8😈

wins!
P1

Corrupt
!P1

FLOODING WITH AN ADAPTIVE ADVERSARY
AND NON-ATOMIC MESSAGE SEND

19

P1

P2

P4

P6

P7

P3

P5

P8

wins!
P1

😈

FLOODING WITH AN ADAPTIVE ADVERSARY
AND NON-ATOMIC MESSAGE SEND

Corrupt
!P1

FLOODING WITH AN ADAPTIVE ADVERSARY
AND ATOMIC MESSAGE SEND

20

wins!
P1

😈
P1

P2

P4

P6

P7

P3

P5

P8

FLOODING WITH AN ADAPTIVE ADVERSARY
AND ATOMIC MESSAGE SEND

20

wins!
P1

😈
Corrupt ,

 and !
P2

P3 P4

P1

P2

P4

P6

P7

P3

P5

P8

21

wins!
P1

😈
P1

P2

P4

P6

P7

P3

P5

P8

FLOODING WITH AN ADAPTIVE ADVERSARY
AND ATOMIC MESSAGE SEND

Corrupt ,
 and !

P2
P3 P4

22

wins!
P1

😈 P2

P4

P6

P7

P3

P5

P8

P1

FLOODING WITH AN ADAPTIVE ADVERSARY
AND ATOMIC MESSAGE SEND

22

wins!
P1

😈 P2

P4

P6

P7

P3

P5

P8

P1

😢

FLOODING WITH AN ADAPTIVE ADVERSARY
AND ATOMIC MESSAGE SEND

22

wins!
P1

😈 P2

P4

P6

P7

P3

P5

P8

P1

😢

FLOODING WITH AN ADAPTIVE ADVERSARY
AND ATOMIC MESSAGE SEND

🥵

-DELAYED ADVERSARIESδ

23

Time😈

-DELAYED ADVERSARIESδ

23

Time😈
t

Adversary decides
to corrupt P1

Corrupt !P1

-DELAYED ADVERSARIESδ

23

t + δ

Adversary gains
control over P1

Time😈
t

Adversary decides
to corrupt P1

Corrupt !P1

-DELAYED ADVERSARIESδ

‣ Informally introduced by [PS17] for long-lived committees.

23

t + δ

Adversary gains
control over P1

Time😈
t

Adversary decides
to corrupt P1

Corrupt !P1

24

wins!
P1

😈
P1

P2

P4

P6

P7

P3

P5

P8

FLOODING WITH A DELAYED ADVERSARY

25

wins!
P1

😈
P1

P2

P4

P6

P7

P3

P5

P8

FLOODING WITH A DELAYED ADVERSARY

25

wins!
P1

😈
Corrupt ,

 and !
P2

P3 P4

P1

P2

P4

P6

P7

P3

P5

P8

FLOODING WITH A DELAYED ADVERSARY

26

wins!
P1

😈
Corrupt ,

 and !
P2

P3 P4

P1

P2

P4

P6

P7

P3

P5

P8😢

FLOODING WITH A DELAYED ADVERSARY

26

wins!
P1

😈
Corrupt ,

 and !
P2

P3 P4

P1

P2

P4

P6

P7

P3

P5

P8😢

FLOODING WITH A DELAYED ADVERSARY

27

wins!
P1

😈
P1

P2

P4

P6

P7

P3

P5

P8

FLOODING WITH A DELAYED ADVERSARY

28

wins!
P1

😈
P1

P2

P4

P6

P7

P3

P5

P8

FLOODING WITH A DELAYED ADVERSARY

28

wins!
P1

😈
Corrupt ,

 and !
P2

P3 P4

P1

P2

P4

P6

P7

P3

P5

P8

FLOODING WITH A DELAYED ADVERSARY

29

wins!
P1

😈
Corrupt ,

 and !
P2

P3 P4

P1

P2

P4

P6

P7

P3

P5

P8

FLOODING WITH A DELAYED ADVERSARY

29

wins!
P1

😈
Corrupt ,

 and !
P2

P3 P4

P1

P2

P4

P6

P7

P3

P5

P8

FLOODING WITH A DELAYED ADVERSARY

29

wins!
P1

😈
Corrupt ,

 and !
P2

P3 P4

P1

P2

P4

P6

P7

P3

P5

P8

FLOODING WITH A DELAYED ADVERSARY

30

wins!
P1

😈
Corrupt ,

 and !
P2

P3 P4

P1

P2

P4

P6

P7

P3

P5

P8😢

FLOODING WITH A DELAYED ADVERSARY

OUR WORK

31

OUR WORK

1. Semantics for -delayed adversaries within UC.δ

31

OUR WORK

1. Semantics for -delayed adversaries within UC.δ

2. Two instantiations of flooding networks secure
against an adaptive adversary that is delayed for
“the time it takes to send + the time it takes time to
resend”:

31

OUR WORK

1. Semantics for -delayed adversaries within UC.δ

2. Two instantiations of flooding networks secure
against an adaptive adversary that is delayed for
“the time it takes to send + the time it takes time to
resend”:

‣ neighbors with diameter.Ω(κ) 𝒪(log(n))

31

OUR WORK

1. Semantics for -delayed adversaries within UC.δ

2. Two instantiations of flooding networks secure
against an adaptive adversary that is delayed for
“the time it takes to send + the time it takes time to
resend”:

‣ neighbors with diameter.Ω(κ) 𝒪(log(n))
‣ neighbors with diameter.Ω(κ ⋅ n) 𝒪(1)

31

DELAYED ADVERSARIES IN UC

32

DELAYED ADVERSARIES IN UC

32

G
P1

P2

Pn

⋮

DELAYED ADVERSARIES IN UC

32

G
P1

P2

Pn

⋮

A

DELAYED ADVERSARIES IN UC

32

G
P1

P2

Pn

⋮

A

Z

DELAYED ADVERSARIES IN UC

33

G
P1

P2

Pn

⋮

A

Z

F
P1

P2

Pn

⋮

S

Z

≈

DELAYED ADVERSARIES IN UC

34

G
P1

P2

Pn

⋮

A

Z

F
P1

P2

Pn

⋮

S

Z

≈

DELAYED ADVERSARIES IN UC

35

G
P1

P2

Pn

⋮

A

Z

F
P1

P2

Pn

⋮

S

Z

≈

DELAYED ADVERSARIES IN UC

36

G
P1

P2

Pn

⋮

A

Z

F
P1

P2

Pn

⋮

S

Z

≈

*We use the notion of time from TARDIS [BDDNO21].

DELAY SHELLS

37

P1 A𝒟δ
Real

DELAY SHELLS

For each party, three additional commands:

37

P1 A𝒟δ
Real

DELAY SHELLS

For each party, three additional commands:

‣ Precorrupt: Time for precorruption is noted.

37

P1 A𝒟δ
Real

DELAY SHELLS

For each party, three additional commands:

‣ Precorrupt: Time for precorruption is noted.

‣ Corrupt: Checks if current time is at least time after precorruption and

otherwise ignores input.

δ

37

P1 A𝒟δ
Real

DELAY SHELLS

For each party, three additional commands:

‣ Precorrupt: Time for precorruption is noted.

‣ Corrupt: Checks if current time is at least time after precorruption and

otherwise ignores input.

δ

‣ (Initialize,): If given as the first command, the precorruption time is

updated to be .

τ

τ
37

P1 A𝒟δ
Real

DELAY SHELLS

For each party, three additional commands:

‣ Precorrupt: Time for precorruption is noted.

‣ Corrupt: Checks if current time is at least time after precorruption and

otherwise ignores input.

δ

‣ (Initialize,): If given as the first command, the precorruption time is

updated to be .

τ

τ
37

SF𝒟δ
IdealP1 A𝒟δ

Real

THEOREMS

38

Theorem 1. Security against a byzantine adversary implies
security against a 0-delayed adversary.

THEOREMS

38

Theorem 1. Security against a byzantine adversary implies
security against a 0-delayed adversary.

Theorem 2. Security against a fast adversary implies
security against a slow adversary.

FLOODING PROTOCOL: πERFlood(ρ)

39

FLOODING PROTOCOL: πERFlood(ρ)

40

Forward each message to each party with probability .ρ

FLOODING PROTOCOL: πERFlood(ρ)

41

P2

P4

P6

P7

P5

P8

P1

P3

Forward each message to each party with probability .ρ

42

P2

P4

P6

P7

P5

P8

P1

P3

Forward each message to each party with probability .ρ

FLOODING PROTOCOL: πERFlood(ρ)

43

P2

P4

P6

P7

P5

P8

P1

P3

Forward each message to each party with probability .ρ

FLOODING PROTOCOL: πERFlood(ρ)

44

P2

P4

P6

P7

P5

P8

P1

P3

Forward each message to each party with probability .ρ

FLOODING PROTOCOL: πERFlood(ρ)

45

P2

P4

P6

P7

P5

P8

P1

P3

Forward each message to each party with probability .ρ

FLOODING PROTOCOL: πERFlood(ρ)

46

P2

P4

P6

P7

P5

P8

P1

P3

Forward each message to each party with probability .ρ

FLOODING PROTOCOL: πERFlood(ρ)

47

P2

P4

P6

P7

P5

P8

P1

P3

Forward each message to each party with probability .ρ

FLOODING PROTOCOL: πERFlood(ρ)

48

P2

P4

P6

P7

P5

P8

P1

P3

Forward each message to each party with probability .ρ

FLOODING PROTOCOL: πERFlood(ρ)

MAIN RESULT (INFORMAL)

49

Theorem 3. The protocol implements a flooding network against an
adversary that is delayed for the time it takes to send plus the time it takes to resend
with either:

1. neighborhood and a diameter of 2.

2. neighborhood and a logarithmic diameter.

πERFlood

Ω(κ ⋅ n)

Ω(κ)

ASSUMPTIONS

50

ASSUMPTIONS

50

‣ Point-to-point Channels: Fσ,Δ
MT

ASSUMPTIONS

50

‣ Point-to-point Channels: Fσ,Δ
MT

‣ Messages input at time must be
delivered before time if sender
stays honest until time .

t
t + Δ
t + σ

ASSUMPTIONS

50

‣ Point-to-point Channels: Fσ,Δ
MT

‣ Messages input at time must be
delivered before time if sender
stays honest until time .

t
t + Δ
t + σ

ASSUMPTIONS

50

‣ Point-to-point Channels: Fσ,Δ
MT

‣ Messages input at time must be
delivered before time if sender
stays honest until time .

t
t + Δ
t + σ

t

Message is
immediately leaked.

ASSUMPTIONS

50

‣ Point-to-point Channels: Fσ,Δ
MT

‣ Messages input at time must be
delivered before time if sender
stays honest until time .

t
t + Δ
t + σ

t + σ

Possible to corrupt sender
and prevent delivery.

t

Message is
immediately leaked.

ASSUMPTIONS

50

‣ Point-to-point Channels: Fσ,Δ
MT

‣ Messages input at time must be
delivered before time if sender
stays honest until time .

t
t + Δ
t + σ

t + σ

Possible to corrupt sender
and prevent delivery.

t

Message is
immediately leaked.

t + Δ Latest delivery of message.

ASSUMPTIONS

50

‣ Point-to-point Channels: Fσ,Δ
MT

‣ Messages input at time must be
delivered before time if sender
stays honest until time .

t
t + Δ
t + σ

‣ Delayed Adversary:

t + σ

Possible to corrupt sender
and prevent delivery.

t

Message is
immediately leaked.

t + Δ Latest delivery of message.

ASSUMPTIONS

50

‣ Point-to-point Channels: Fσ,Δ
MT

‣ Messages input at time must be
delivered before time if sender
stays honest until time .

t
t + Δ
t + σ

‣ Delayed Adversary:
‣ It takes time from an adversary

decides to corrupt a party, to control of
the party is given to the adversary.

Δ + σ

t + σ

Possible to corrupt sender
and prevent delivery.

t

Message is
immediately leaked.

t + Δ Latest delivery of message.

ASSUMPTIONS

50

‣ Point-to-point Channels: Fσ,Δ
MT

‣ Messages input at time must be
delivered before time if sender
stays honest until time .

t
t + Δ
t + σ

‣ Delayed Adversary:
‣ It takes time from an adversary

decides to corrupt a party, to control of
the party is given to the adversary.

Δ + σ

t + σ

Possible to corrupt sender
and prevent delivery.

t + Δ + σ

Min. corruption delay.

t

Message is
immediately leaked.

t + Δ Latest delivery of message.

FUNCTIONALITY: FΔ′

Flood

51

FUNCTIONALITY: FΔ′

Flood

51

Any message input by an honest party at time must be
delivered to all other honest parties before time .

t
t + Δ′

FUNCTIONALITY: FΔ′

Flood

51

Any message input by an honest party at time must be
delivered to all other honest parties before time .

t
t + Δ′

FUNCTIONALITY: FΔ′

Flood

51

t Message is
immediately leaked.

Any message input by an honest party at time must be
delivered to all other honest parties before time .

t
t + Δ′

FUNCTIONALITY: FΔ′

Flood

51

t + Δ′ Latest delivery of message.

t Message is
immediately leaked.

Any message input by an honest party at time must be
delivered to all other honest parties before time .

t
t + Δ′

FUNCTIONALITY: FΔ′

Flood

Any message input by an honest party at time must be
delivered to all other honest parties before time .

t
t + Δ′

52

Adversary has not initiated the corruption.
t

t + Δ′ Latest delivery of message.

Message is
immediately leaked.

Theorem 3. The protocol UC-realises the functionality in the
-hybrid world against a -delayed adversary if either:

πERFlood(ρ) FΔ′
Flood

Fσ,Δ
MT (σ + Δ)

MAIN RESULT

53

Theorem 3. The protocol UC-realises the functionality in the
-hybrid world against a -delayed adversary if either:

1. and ;

πERFlood(ρ) FΔ′
Flood

Fσ,Δ
MT (σ + Δ)

ρ =
κ
h

Δ′ = 2 ⋅ Δ

54

 = security parameter.
 = number of parties guaranteed to be honest.
 = number of parties in total.

κ
h
n

MAIN RESULT

Theorem 3. The protocol UC-realises the functionality in the
-hybrid world against a -delayed adversary if either:

1. and ;

πERFlood(ρ) FΔ′
Flood

Fσ,Δ
MT (σ + Δ)

ρ =
κ
h

Δ′ = 2 ⋅ Δ

55

 = security parameter.
 = number of parties guaranteed to be honest.
 = number of parties in total.

κ
h
n

MAIN RESULT

Theorem 3. The protocol UC-realises the functionality in the
-hybrid world against a -delayed adversary if either:

1. and .

2. and .

πERFlood(ρ) FΔ′
Flood

Fσ,Δ
MT (σ + Δ)

ρ =
κ
h

Δ′ = 2 ⋅ Δ

ρ =
κ
h

Δ′ = 𝒪(Δ ⋅ log(n
κ))

56

 = security parameter.
 = number of parties guaranteed to be honest.
 = number of parties in total.

κ
h
n

MAIN RESULT

CONCLUSION
‣ Formal model for -delayed adversaries within UC.δ

57

SØREN ELLER THOMSEN
AUGUST 2022 PHD. STUDENT

DEPARTMENT OF COMPUTER SCIENCE

AARHUS
UNIVERSITY

https://eprint.iacr.org/2022/010
mailto:sethomsen@cs.au.dk

CONCLUSION
‣ Formal model for -delayed adversaries within UC.δ

‣ Two instantiations of a flooding network secure against adaptive adversaries:

57

SØREN ELLER THOMSEN
AUGUST 2022 PHD. STUDENT

DEPARTMENT OF COMPUTER SCIENCE

AARHUS
UNIVERSITY

https://eprint.iacr.org/2022/010
mailto:sethomsen@cs.au.dk

CONCLUSION
‣ Formal model for -delayed adversaries within UC.δ

‣ Two instantiations of a flooding network secure against adaptive adversaries:
‣ One with a constant neighborhood and logarithmic diameter.

57

SØREN ELLER THOMSEN
AUGUST 2022 PHD. STUDENT

DEPARTMENT OF COMPUTER SCIENCE

AARHUS
UNIVERSITY

https://eprint.iacr.org/2022/010
mailto:sethomsen@cs.au.dk

CONCLUSION
‣ Formal model for -delayed adversaries within UC.δ

‣ Two instantiations of a flooding network secure against adaptive adversaries:
‣ One with a constant neighborhood and logarithmic diameter.
‣ One with a squareroot neighborhood and constant diameter.

57

SØREN ELLER THOMSEN
AUGUST 2022 PHD. STUDENT

DEPARTMENT OF COMPUTER SCIENCE

AARHUS
UNIVERSITY

https://eprint.iacr.org/2022/010
mailto:sethomsen@cs.au.dk

CONCLUSION
‣ Formal model for -delayed adversaries within UC.δ

‣ Two instantiations of a flooding network secure against adaptive adversaries:
‣ One with a constant neighborhood and logarithmic diameter.
‣ One with a squareroot neighborhood and constant diameter.

‣ Details: https://eprint.iacr.org/2022/010.

57

SØREN ELLER THOMSEN
AUGUST 2022 PHD. STUDENT

DEPARTMENT OF COMPUTER SCIENCE

AARHUS
UNIVERSITY

https://eprint.iacr.org/2022/010
mailto:sethomsen@cs.au.dk

CONCLUSION
‣ Formal model for -delayed adversaries within UC.δ

‣ Two instantiations of a flooding network secure against adaptive adversaries:
‣ One with a constant neighborhood and logarithmic diameter.
‣ One with a squareroot neighborhood and constant diameter.

‣ Details: https://eprint.iacr.org/2022/010.

‣ Contact: sethomsen@cs.au.dk.

57

SØREN ELLER THOMSEN
AUGUST 2022 PHD. STUDENT

DEPARTMENT OF COMPUTER SCIENCE

AARHUS
UNIVERSITY

https://eprint.iacr.org/2022/010
mailto:sethomsen@cs.au.dk

58

The Hybrid World

The Ideal World

PROOF IDEA UC

‘

58

The Hybrid World

The Ideal World

PROOF IDEA UC

Sufficient to bound
probability for late delivery!

‘

DYNAMIC SIZE IS AN ADVANTAGE

59

P1

P2

P4

P6

P5

P8

P3

P7

GAME-HOPS

60

Output

REFERENCES
[GKL15]: Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone protocol: Analysis and
applications. In Elisabeth Oswald and Marc Fischlin, editors, EUROCRYPT 2015, Part II, volume 9057 of LNCS, pages
281–310, Sofia, Bulgaria, April 26–30, 2015. Springer, Heidelberg, Germany.
[GKL17]: Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone protocol with chains of variable
difficulty. In Jonathan Katz and Hovav Shacham, editors, CRYPTO 2017, Part I, volume 10401 of LNCS, pages 291–
323, Santa Barbara, CA, USA, August 20–24, 2017. Springer, Heidelberg, Germany. 
[PSs17]: Rafael Pass, Lior Seeman, and abhi shelat. Analysis of the blockchain protocol in asynchronous networks. In
Jean-Sébastien Coron and Jesper Buus Nielsen, editors, EUROCRYPT 2017, Part II, volume 10211 of LNCS, pages
643–673, Paris, France, April 30 – May 4, 2017. Springer, Heidelberg, Germany.
[PS17]: Rafael Pass and Elaine Shi. Hybrid consensus: Efficient consensus in the permissionless model. In Andréa W.
Richa, editor, 31st International Symposium on Distributed Computing, DISC 2017, October 16-20, 2017, Vienna,
Austria, volume 91 of LIPIcs, pages 39:1–39:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017.
[DGKR18]: Bernardo David, Peter Gazi, Aggelos Kiayias, and Alexander Russell. Ouroboros praos: An adaptively-
secure, semi-synchronous proof-of-stake blockchain. In Jes- per Buus Nielsen and Vincent Rijmen, editors,
EUROCRYPT 2018, Part II, volume 10821 of LNCS, pages 66–98, Tel Aviv, Israel, April 29 – May 3, 2018. Springer,
Heidelberg, Germany.
[BDDNO21]: Carsten Baum, Bernardo David, Rafael Dowsley, Jesper Buus Nielsen, and Sabine Oechsner. TARDIS: A
foundation of time-lock puzzles in UC. In EUROCRYPT (3), volume 12698 of Lecture Notes in Computer Science,
pages 429–459. Springer, 2021.

61

