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Abstract. Safely integrating third-party code in applications while protecting
the confidentiality of information is a long-standing problem. Pure functional
programming languages, like Haskell, make it possible to enforce lightweight
information-flow control through libraries like MAC by Russo. This work presents
DepSec, a MAC inspired, dependently typed library for static information-flow
control in Idris. We showcase how adding dependent types increases the ex-
pressiveness of state-of-the-art static information-flow control libraries and how
DepSec matches a special-purpose dependent information-flow type system on a
key example. Finally, we show novel and powerful means of specifying statically
enforced declassification policies using dependent types.
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1 Introduction

Modern software applications are increasingly built using libraries and code from mul-
tiple third parties. At the same time, protecting confidentiality of information manipu-
lated by such applications is a growing, yet long-standing problem. Third-party libraries
could in general have been written by anyone and they are usually run with the same
privileges as the main application. While powerful, such privileges open up for abuse.

Traditionally, access control [7] and encryption have been the main means for pre-
venting data dissemination and leakage, however, such mechanisms fall short when
third-party code needs access to sensitive information to provide its functionality. The
key observation is that these mechanisms only place restrictions on the access to in-
formation but not its propagation. Once information is accessed, the accessor is free to
improperly transmit or leak the information in some form, either by intention or error.

Language-based Information-Flow Control [35] is a promising technique for en-
forcing information security. Traditional enforcement techniques analyze how informa-
tion at different security levels flows within a program ensuring that information flows
only to appropriate places, suppressing illegal flows. To achieve this, most information-
flow control tools require the design of new languages, compilers, or interpreters (e.g.
[12, 16, 21, 22, 25, 28, 38]). Despite a large, growing body of work on language-based
information-flow security, there has been little adoption of the proposed techniques. For
information-flow policies to be enforced in such systems, the whole system has to be
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written in new languages – an inherently expensive and time-consuming process for
large software systems. Moreover, in practice, it might very well be that only small
parts of an application are governed by information-flow policies.

Pure functional programming languages, like Haskell, have something to offer with
respect to information security as they strictly separate side-effect free and side-effectful
code. This makes it possible to enforce lightweight information-flow control through
libraries [11, 19, 33, 34, 41] by constructing an embedded domain-specific security
sub-language. Such libraries enforce a secure-by-construction programming model as
any program written against the library interface is not capable of leaking secrets. This
construction forces the programmer to write security-critical code in the sub-language
but otherwise allows them to freely interact and integrate with non-security critical code
written in the full language. In particular, static enforcement libraries like MAC [33]
are appealing as no run-time checks are needed and code that exhibits illegal flows is
rejected by the type checker at compile-time. Naturally, the expressiveness of Haskell’s
type system sets the limitation on which programs can be deemed secure and which
information flow policies can be guaranteed.

Dependent type theories [23, 30] are implemented in many programming languages
such as Coq [13], Agda [31], Idris [8], and F∗ [43]. Programming languages that im-
plement such theories allow types to dependent on values. This enables programmers
to give programs a very precise type and increased confidence in its correctness.

In this paper, we show that dependent types provide a direct and natural way of
expressing precise data-dependent security policies. Dependent types can be used to
represent rich security policies in environments like databases and data-centric web ap-
plications where, for example, new classes of users and new kinds of data are encoun-
tered at run-time and the security level depends on the manipulated data itself [22].
Such dependencies are not expressible in less expressive systems like MAC. Among
other things, with dependent types, we can construct functions where the security level
of the output depends on an argument:

getPassword : (u : Username) -> Labeled u String

Given a user name u, getPassword retrieves the corresponding password and classifies
it at the security level of u. As such, we can express much more precise security policies
that can depend on the manipulated data.

Idris is a general-purpose functional programming language with full-spectrum de-
pendent types, that is, there is no restrictions on which values may appear in types. The
language is strongly influenced by Haskell and has, among others, inherited its strict
encapsulation of side-effects. Idris essentially asks the question: “What if Haskell had
full dependent types?” [9]. This work, essentially, asks:

“What if MAC had full dependent types?”

We address this question using Idris because of its positioning as a general-purpose
language rather than a proof assistant. All ideas should be portable to equally expressive
systems with full dependent types and strict monadic encapsulation of side-effects.

In summary, the contributions of this paper are as follows.

– We present DepSec, a MAC inspired statically enforced dependently typed information-
flow control library for Idris.
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– We show how adding dependent types strictly increases the expressiveness of state-
of-the-art static information-flow control libraries and how DepSec matches the
expressiveness of a special-purpose dependent information-flow type system on a
key example.

– We show how DepSec enables and aids the construction of policy-parameterized
functions that abstract over the security policy.

– We show novel and powerful means to specify statically-ensured declassification
using dependent types for a wide variety of policies.

– We show progress-insensitive noninterference [1] for the core library in a sequential
setting.

Outline The rest of the paper proceeds through a presentation of the DepSec library
(Section 2); a conference manager case study (Section 3) and the introduction of policy-
parameterized functions (Section 4) both showcasing the expressiveness of DepSec;
means to specify statically-ensured declassification policies (Section 5); soundness of
the core library (Section 6); and related work (Section 7).

All code snippets presented in the following are extracts from the source code. All
source code is implemented in Idris 1.3.1. and available at

https://github.com/simongregersen/DepSec.

The source code of the core library is also available in Appendix C.

1.1 Assumptions and threat model

In the rest of this paper, we require that code is divided up into trusted code, written
by someone we trust, and untrusted code, written by a potential attacker. The trusted
computing base (TCB) has no restrictions, but untrusted code does not have access to
modules providing input/output behavior, the data constructors of the domain specific
language and a few specific functions related to declassification. In Idris, this means that
we specifically do not allow access to IO functions and unsafePerformIO. In DepSec,
constructors and functions marked with a TCB comment are inaccessible to untrusted
code. Throughout the paper we will emphasize when this is the case.

We require that all definitions made by untrusted code are total, that is, defined for
all possible inputs and are guaranteed to terminate. This is necessary if we want to trust
proofs given by untrusted code. Otherwise, it could construct an element of the empty
type from which it could prove anything:

empty : Void

empty = empty

In Idris, this can be checked using the --total compiler flag. Furthermore, we do not
consider concurrency nor any internal or termination covert channels.

2 The DepSec library

In information-flow control, labels are used to model the sensitivity of data. Such la-
bels usually form a security lattice [14] where the induced partial ordering v specifies
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allowed flows of information and hence the security policy. For example, `1 v `2 spec-
ifies that data with label `1 is allowed to flow to entities with label `2. In DepSec, labels
are represented by values that form a verified join semilattice implemented as Idris in-
terfaces1. That is, we require proofs of the lattice properties when defining an instance
of JoinSemilattice.

interface JoinSemilattice a where

join : a -> a -> a

associative :

(x, y, z : a) -> x `join` (y `join` z) = (x `join` y) `join` z
commutative : (x, y : a) -> x `join` y = y `join` x
idempotent : (x : a) -> x `join` x = x

Dependent function types (often referred to as Π types) in Idris can express such re-
quirements. If A is a type and B is a type indexed by a value of type A then (x : A) -> B
is the type of functions that map arguments x of type A to values of type B x.

A lattice induces a partial ordering, which gives a direct way to express flow con-
straints. We introduce a verified partial ordering together with an implementation of this
for JoinSemilattice. That is, to define an instance of the Poset interface we require a
concrete instance of an associated data type leq as well as proofs of necessary algebraic
properties of leq.

interface Poset a where

leq : a -> a -> Type

reflexive : (x : a) -> x `leq` x
antisymmetric : (x, y : a) -> x `leq` y -> y `leq` x -> x = y
transitive : (x, y, z : a) -> x `leq` y -> y `leq` z -> x `leq` z

implementation JoinSemilattice a => Poset a where

leq x y = (x `join` y = y)
...

This definition allows for generic functions to impose as few restrictions as possible on
the user while being able to exploit the algebraic structure in proofs, as will become
evident in Section 3 and 4. For the sake of the following case studies, we also have a
definition of a BoundedJoinSemilattice requiring a least element Bottom of an instance
of JoinSemilattice and a proof of the element being the unit.

The Core API Figure 1 presents the type signature of DepSec’s core API. Notice that
names beginning with a lower case letter that appear as a parameter or index in a type
declaration will be automatically bound as an implicit argument in Idris, and the auto
annotation on implicit arguments means that Idris will attempt to fill in the implicit
argument by searching the calling context for an appropriate value.

Abstract data type Labeled ` a denotes a value of type a with sensitivity level `.
We say that Labeled ` a is indexed by ` and parameterized by a. Abstract data type
DIO ` a denotes a secure computation that handles values with sensitivity level ` and

1 Interfaces in Idris are similar to type classes in Haskell.
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data Labeled : label -> Type -> Type where

MkLabeled : valueType -> Labeled label valueType -- TCB

data DIO : l -> Type -> Type where

MkDIO : IO valueType -> DIO l valueType -- TCB

Monad (DIO l) where

...

label : Poset label => {l : label} -> a -> Labeled l a

unlabel : Poset label => {l, l' : label}
-> {auto flow : l `leq` l'}
-> Labeled l a

-> DIO l' a

plug : Poset label => {l, l' : label}
-> DIO l' a
-> {auto flow : l `leq` l'}
-> DIO l (Labeled l' a)

run : DIO l a -> IO a -- TCB

lift : IO a -> DIO l a -- TCB

Fig. 1. Type signature of the core DepSec API.

results in a value of type a. It is internally represented as a wrapper around the regu-
lar IO monad that, similar to the one in Haskell, can be thought of as a state monad
where the state is the entire world. Notice that both data constructors MkLabeled and
MkDIO are not available to untrusted code as this would allow pattern matching and un-
controlled unwrapping of protected entities. As a consequence, we introduce functions
label and unlabel for labeling and unlabeling values. Like Rajani and Garg [32], but
unlike MAC, the type signature of label imposes no lattice constraints on the compu-
tation context. This does not leak information as, if l v l′ and a computation c has type
DIO l′ (Labeled l V) for any type V , then there is no way for the labeled return value of
c to escape the computation context with label l′.

As in MAC, the API contains a function plug that safely integrates sensitive compu-
tations into less sensitive ones. This avoids the need for nested computations and label
creep, that is, the raising of the current label to a point where the computation can no
longer perform useful tasks [33, 46]. Finally, we also have functions run and lift that
are only available to trusted code for unwrapping of the DIO ` monad and lifting of the
IO monad into the DIO ` monad.

Labeled resources Data type Labeled ` a is used to denote a labeled Idris value with
type a. This is an example of a labeled resource [33]. By itself, the core library does
not allow untrusted code to perform any side effects but we can safely incorporate, for
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example, file access and mutable references as other labeled resources. Figure 2 presents
type signatures for files indexed by security levels used for secure file handling while
mutable references are available in Appendix C. Abstract data type SecFile ` denotes
a secure file with sensitivity level `. As for Labeled ` a, the data constructor MkSecFile
is not available to untrusted code.

The function readFile takes as input a secure file SecFile l' and returns a com-
putation with sensitivity level l that returns a labeled value with sensitivity level l'.
Notice that the l v l' flow constraint is required to enforce the no read-up policy [7].
That is, the result of the computation returned by readFile only involves data with sen-
sitivity at most l. The function writeFile takes as input a secure file SecFile l'' and
a labeled value of sensitivity level l', and it returns a computation with sensitivity level
l that returns a labeled value with sensitivity level l''. Notice that both the l v l' and
l' v l'' flow constraints are required, essentially enforcing the no write-down policy
[7], that is, the file never receives data more sensitive than its sensitivity level.

Finally, notice that the standard library functions for reading and writing files in
Idris used to implement the functions in Figure 2 do not raise exceptions. Rather, both
functions return an instance of the sum type Either. We stay consistent with Idris’
choice for this instead of adding exception handling as done in MAC.

data SecFile : {label : Type} -> (l : label) -> Type where

MkSecFile : (path : String) -> SecFile l -- TCB

readFile : Poset label => {l,l' : label}
-> {auto flow : l `leq` l'}
-> SecFile l'
-> DIO l (Labeled l' (Either FileError String))

writeFile : Poset label => {l,l',l'' : label}
-> {auto flow : l `leq` l'} -> {auto flow' : l' `leq` l''}
-> SecFile l''
-> Labeled l' String
-> DIO l (Labeled l'' (Either FileError ()))

Fig. 2. Type signatures for secure file handling.

3 Case study: Conference manager system

This case study showcases the expressiveness of DepSec by reimplementing a confer-
ence manager system with a fine-grained data-dependent security policy introduced by
Lourenço and Caires [22]. Lourenço and Caires base their development on a minimal
λ-calculus with references and collections and they show how secure operations on rel-
evant scenarios can be modelled and analysed using dependent information flow types.
Our reimplementation demonstrates how DepSec matches the expressiveness of such a
special-purpose built dependent type system on a key example.
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In this scenario, a user is either a regular user, an author user, or a program com-
mittee (PC) member. The conference manager contains information about the users,
their submissions, and submission reviews. This data is stored in lists of references to
records, and the goal is to statically ensure, by typing, the confidentiality of the data
stored in the conference manager system. As such, the security policy is:

– A registered user’s information is not observable by other users.
– The content of a paper can be seen by its authors as well as its reviewers.
– Comments to the PC of a submission’s review can only be seen by other members

that are also reviewers of that submission.
– The only authors that are allowed to see the grade and the review of the submission

are those that authored that submission.

To achieve this security policy, Lourenço and Caires make use of indexed security
labels [21]. The security level U is partitioned into a number of security compartments
such that U(uid) represents the compartment of the registered user with id uid. Simi-
larly, the security level A is indexed such that A(uid, sid) stands for the compartment
of data belonging to author uid and their submission sid, and PC is indexed such that
PC(uid, sid) stands for data belonging to the PC member with user id uid assigned to
review the submission with id sid. Furthermore, levels > and ⊥ are introduced such
that, for example, U(⊥) v U(uid) v U(>). Now, the security lattice is defined using
two equations:

∀uid, sid. U(uid) v A(uid, sid) (1)
∀uid1, uid2, sid. A(uid1, sid) v PC(uid2, sid) (2)

Lourenço and Caires are able to type a list of submissions with a dependent sum type
that assigns the content of the paper the security level A(uid, sid), where uid and sid are
fields of the record. For example, if a concrete submission with identifier 2 was made
by the user with identifier 1, the content of the paper gets classified at security level
A(1, 2). In consequence, A(1, 2) v PC(n, 2) for any uid n and the content of the paper
is only observable by its assigned reviewers. Similar types are given for the list of user
information and the list of submission reviews, enforcing the security policy described
in the above.

To express this policy in DepSec, we introduce abstract data types Id and Compartment
(cf. Figure 3) followed by an implementation of the BoundedJoinSemilattice interface
that satisfies equations (1) and (2).

data Id : Type where

Top : Id

Nat : Nat -> Id

Bot : Id

data Compartment : Type where

U : Id -> Compartment

A : Id -> Id -> Compartment

PC : Id -> Id -> Compartment

Fig. 3. Abstract data types for the conference manager sample security lattice.

Using the above, the required dependent sum types can easily be encoded with
DepSec in Idris as presented in Figure 4. With these typings in place, implementing the
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record User where

constructor MkUser

uid : Id

name : Labeled (U uid) String

univ : Labeled (U uid) String

email : Labeled (U uid) String

record Submission where

constructor MkSubmission

uid : Id

sid : Id

title : Labeled (A uid sid) String

abs : Labeled (A uid sid) String

paper : Labeled (A uid sid) String

record Review where

constructor MkReview

uid : Id

sid : Id

PC_only : Labeled (PC uid sid) String

review : Labeled (A Top sid) String

grade : Labeled (A Top sid) Integer

Fig. 4. Conference manager types encoded with DepSec.

examples from Lourenço and Caires [22] is straightforward. For example, the function
viewAuthorPapers takes as input a list of submissions and a user identifier uid1 from
which it returns a computation that returns a list of submissions authored by the user
with identifier uid1. Notice that uid denotes the automatically generated record projec-
tion function that retrieves the field uid of the record, and that (x: A ** B) is notation
for a dependent pair (often referred to as a Σ type) where A and B are types and B may
depend on x.

viewAuthorPapers : Submissions

-> (uid1 : Id)

-> DIO Bottom (List (sub : Submission ** uid1 = (uid sub)))

The addCommentSubmission operation is used by the PC members to add comments to
the submissions. The function takes as input a list of reviews, a user identifier of a PC
member, a submission identifier, and a comment with label A uid1 sid1. It returns a
computation that updates the PC only field in the review of the paper with identifier
sid1.

addCommentSubmission : Reviews -> (uid1 : Id) -> (sid1 : Id)

-> Labeled (A uid1 sid1) String

-> DIO Bottom ()

Notice that to implement this specific type signature, up-classification is necessary to
assign the comment with type Labeled (A uid1 sid1) String to a field with type
Labeled (PC uid sid1) String. This can be achieved soundly with the relabel prim-
itive introduced by Vassena et al. [46] as A uid1 sid1 v PC uid sid1. We include this
primitive in Appendix C. Several other examples are available in the accompanying
source code. The entire case study amounts to about 300 lines of code where half of the
lines implement and verify the lattice.
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4 Policy-parameterized functions

A consequence of using a dependently typed language, and the design of DepSec, is that
functions can be defined such that they abstract over the security policy while retaining
precise security levels. This makes it possible to reuse code across different applications
and write other libraries on top of DepSec. We can exploit the existence of a lattice join,
the induced poset, and their verified algebraic properties to write such functions.

readTwoFiles : BoundedJoinSemilattice label

=> {l, l' : label}
-> SecFile l

-> SecFile l'
-> DIO Bottom (Labeled (join l l') (Either FileError String))

readTwoFiles file1 file2 {l} {l'} =
do file1' <- readFile {flow = leq_bot_x l} file1
file2' <- readFile {flow = leq_bot_x l'} file2
let dio : DIO (join l l') (Either FileError String)
= do c1 <- unlabel {flow = join_x_xy l l'} file1'

c2 <- unlabel {flow = join_y_xy l l'} file2'
pure $ case (c1, c2) of

(Right c1', Right c2') => Right $ c1' ++ c2'
(Left e1, _) => Left e1

(_, Left e2) => Left e2

plug {flow = leq_bot_x (join l l')} dio

Fig. 5. Reading two files to a string labeled with the join of the labels of the files.

Figure 5 presents the function readTwoFiles that is parameterized by a bounded
join semilattice. It takes two secure files with labels l and l' as input and returns a
computation that concatenates the contents of the two files labeled with the join of l
and l'. To implement this, we make use of the unlabel and readFile primitives from
Figure 1 and 2, respectively. This computation unlabels the contents of the files and
returns the concatenation of the contents if no file error occurred. Notice that pure is
the Idris function for monadic return, corresponding to the return function in Haskell.
Finally, this computation is plugged into the surrounding computation. Notice how the
usage of readFile and unlabel introduces several proof obligations, namely ⊥ v l,
l', l t l' and l, l' v l t l'. When working on a concrete lattice these obligations
are usually fulfilled by Idris’ automatic proof search but, currently, such proofs need
to be given manually in the general case. All obligations follow immediately from the
algebraic properties of the bounded semilattice and are given in three auxiliary lemmas
leq bot x, join x xy, and join y xy available in Appendix C (amounting to 10 lines of
code).

Writing functions operating on a fixed number of resources is limiting. However,
the function in Figure 5 can easily be generalized to a function working on an arbitrary
data structure containing files with different labels from an arbitrary lattice. Similar to
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the approach taken by Buiras et al. [11] that hide the label of a labeled value using a
data type definition, we hide the label of a secure file with a dependent pair

GenFile : Type -> Type

GenFile label = (l : label ** SecFile l)

that abstracts away the concrete sensitivity level of the file. Moreover, we introduce a
specialized join function

joinOfFiles : BoundedJoinSemilattice label

=> List (GenFile label)

-> label

that folds the join function over a list of file sensitivity labels. Now, it is possible to
implement a function that takes as input a list of files, reads the files, and returns a
computation that concatenates all their contents (if no file error occurred) where the
return value is labeled with the join of all their sensitivity labels.

readFiles : BoundedJoinSemilattice a

=> (files: (List (GenFile a)))

-> DIO Bottom (Labeled (joinOfFiles files)

(Either (List FileError) String))

When implementing this, one has to satisfy non-trivial proof obligations as, for exam-
ple, that l v joinOfFiles(files) for all secure files f ∈ files where the label of f
is l. While provable (in 40 lines of code in our development), if equality is decidable
for elements of the concrete lattice we can postpone such proof obligations to a point
in time where it can be solved by reflexivity of equality. By defining a decidable lattice
order

decLeq : JoinSemilattice a => DecEq a => (x, y : a) -> Dec (x `leq` y)
decLeq x y = decEq (x `join` y) y

we can get such a proof “for free” by inserting a dynamic check of whether the flow
is allowed. With this, a readFiles' function with the exact same functionality as the
original readFiles function can be implemented with minimum effort. In the below,
prf is the proof that the label l of file may flow to joinOfFiles files .

readFiles' : BoundedJoinSemilattice a => DecEq a
=> (files: (List (GenFile a)))

-> DIO Bottom (Labeled (joinOfFiles files)

(Either (List FileError) String))

readFiles' files =
...

case decLeq l (joinOfFiles files) of

Yes prf => ...

No _ => ...

The downside of this is the introduction of a negative case, the No-case, that needs
handling even though it will never occur if joinOfFiles is implemented correctly.

In combination with GenFile, decLeq can be used to implement several other in-
teresting examples. For instance, a function that reads all files with a sensitivity label
below a certain label to a string labeled with that label. The accompanying source code
showcases multiple such examples that exploit decidable equality.
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5 Declassification

Realistic applications often release some secret information as part of their intended
behavior; this action is known as declassification.

In DepSec, trusted code may declassify secret information without adhering to any
security policy as trusted code has access to both the DIO ` a and Labeled ` a data con-
structors. However, only giving trusted code the power of declassification is limiting
as we want to allow the use of third-party code as much as possible. The main chal-
lenge we address is how to grant untrusted code the right amount of power such that
declassification is only possible in the intended way.

Sabelfeld and Sands [37] identify four dimensions of declassification: what, who,
where, and when. In this section, we present novel and powerful means for static declas-
sification with respect to three of the four dimensions and illustrate these with several
examples. To statically enforce different declassification policies we take the approach
of Sabelfeld and Myers [36] and use escape hatches, a special kind of functions. In
particular, we introduce the notion of a hatch builder; a function that creates an escape
hatch for a particular resource and which can only be used when a certain condition is
met. Such an escape hatch can therefore be used freely by untrusted code.

5.1 The what dimension

Declassification policies related to the what dimension place restrictions on exactly
“what” and “how much” information is released. It is in general difficult to statically
predict how data to be declassified is manipulated or changed by programs [34] but
exploiting dependent types can get us one step closer.

To control what information is released, we introduce the notion of a predicate hatch
builder only available to trusted code for producing hatches for untrusted code.

predicateHatchBuilder : Poset lt => {l, l' : lt} -> {D, E : Type}
-> (d : D)

-> (P : D -> E -> Type)

-> (d : D ** Labeled l (e : E ** P d e)

-> Labeled l' E) -- TCB

Intuitively, the hatch builder takes as input a data structure d of type D followed by a
predicate P upon d and something of type E. It returns a dependent pair of the initial
data structure and a declassification function from sensitivity level l to l'. To actually
declassify a labeled value e of type E one has to provide a proof that P d e holds. Notice
that this proof may be constructed in the context of the sensitivity level l that we are
declassifying from.

The reason for parameterizing the predicate P by a data structure of type D is to allow
declassification to be restricted to a specific context or data structure. This is used in the
following example of an auction system, in which only the highest bid of a specific list
of bids can be declassified.
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Example Consider a two point lattice where L v H, H @ L and an auction system where
participants place bids secretly. All bids are labeled H and are put into a data structure
BidLog. In the end, we want only the winning bid to be released and hence declassified
to label L. To achieve this, we define a declassification predicate HighestBid.

HighestBid : BidLog -> Bid -> Type

HighestBid = \log, b => (Elem (label b) log, MaxBid b log)

Informally, given a log log of labeled bids and a bid b, the predicate states that the bid
is in the log, Elem (label b) log, and that it is the maximum bid, MaxBid b log. We
apply predicateHatchBuilder to a log of bids and the HighestBid predicate to obtain
a specialized escape hatch of type BidHatch that enforces the declassification policy
defined by the predicate.

BidHatch : Type

BidHatch = (log : BidLog ** Labeled H (b : Bid ** HighestBid log b)

-> Labeled L Bid)

This hatch can be used freely by untrusted code when implementing the auction system.
By constructing a function

getMaxBid : (r : BidLog) -> DIO H (b : Bid ** HighestBid r b)

untrusted code can plug the resulting computation into an L context and declassify the
result value using the argument hatch function.

auction : BidHatch -> DIO L (Labeled L Bid)

auction ([] ** _) = pure $ label ("no bids", 0)

auction (r :: rs ** hatch) =

do max <- plug (getMaxBid (r :: rs))

let max' : Labeled L Bid = hatch max
...

To show the HighestBid predicate (which in our implementation comprises 40 lines
of code), untrusted code will need a generalized unlabel function that establishes the
relationship between label and the output of unlabel. The only difference is its return
type: a computation that returns a value and a proof that when labeling this value we
will get back the initial input. This definition poses no risk to soundness as the proof is
protected by the computation sensitivity level.

unlabel' : Poset lt => {l,l': lt}
-> {auto flow: l `leq` l'}
-> (labeled: Labeled l a)

-> DIO l' (c : a ** label c = labeled)

Limiting hatch usage Notice how escape hatches, generally, can be used an indefi-
nite number of times. The Control.ST library [10] provides facilities for creating,
reading, writing, and destroying state in the type of Idris functions and, especially, al-
lows tracking of state change in a function type. This allows us to limit the number of
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times a hatch can be used. Based on a concept of resources, a dependent type STrans
tracks how resources change when a function is invoked. Specifically, a value of type
STrans m returnType in res out res represents a sequence of actions that manipu-
late state where m is an underlying computation context in which the actions will be
executed, returnType is the return type of the sequence, in res is the required list of
resources available before executing the sequence, and out res is the list of resources
available after executing the sequence.

To represent state transitions more directly, ST is a type level function that computes
an appropriate STrans type given a underlying computation context, a result type, and a
list of actions, which describe transitions on resources. Actions can take multiple forms
but the one we will make use of is of the form lbl ::: ty in :-> ty out that expresses
that the resource lbl begins in state ty in and ends in state ty out. By instantiating ST
with DIO l as the underlying computation context:

DIO' : l -> (ty : Type) -> List (Action ty) -> Type
DIO' l = ST (DIO l)

and use it together with a resource Attempts, we can create a function limit that ap-
plies its first argument f to its second argument arg with Attempts (S n) as its initial
required state and Attempts n as the output state.

limit : (f : a -> b) -> (arg : a)

-> DIO' l b [attempts ::: Attempts (S n) :-> Attempts n]

That is, we encode that the function consumes “an attempt.” With the limit function it
is possible to create functions where users are forced, by typing, to specify how many
times it is used.

As an example, consider a variant of an example by Russo et al. [34] where we
construct a specialized hatch passwordHatch that declassifies the boolean comparison
of a secret number with an arbitrary number.

passwordHatch : (labeled : Labeled H Int)

-> (guess : Int)

-> DIO' l Bool [attempts ::: Attempts (S n) :-> Attempts n]
passwordHatch (MkLabeled v) = limit (\g => g == v)

To use this hatch, untrusted code is forced to specify how many times it is used.

pwCheck : Labeled H Int

-> DIO' L () [attempts ::: Attempts (3 + n) :-> Attempts n]
pwCheck pw =

do x1 <- passwordHatch pw 1

x2 <- passwordHatch pw 2

x3 <- passwordHatch pw 3

x4 <- passwordHatch pw 4 -- type error!

...
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5.2 The who and when dimensions

To handle declassification policies related to who may declassify information and when
declassification may happen we introduce the notion of a token hatch builder only avail-
able to trusted code for producing hatches for untrusted code to use.

tokenHatchBuilder : Poset labelType => {l, l' : labelType} -> {E, S : Type}
-> (Q : S -> Type)

-> (s : S ** Q s) -> Labeled l E -> Labeled l' E -- TCB

The hatch builder takes as input a predicate Q on something of type S and returns a
declassification function from sensitivity level l to l' given that the user can prove
the existence of some s such that Q s holds. As such, by limiting when and how un-
trusted can obtain a value that satisfy predicate Q, we can construct several interesting
declassification policies.

The rest of this section discusses how predicate hatches can be used for time-based
and authority-based control of declassification; the use of the latter is demonstrated on
a case study.

Time-based hatches To illustrate the idea of token hatches for the when dimension of
declassification, consider the following example. Let Time be an abstract data type with
a data constructor only available to trusted code and tick : DIO l Time a function that
returns the current system time wrapped in the Time data type such that this is the only
way for untrusted code to construct anything of type Time. Notice that this does not
expose an unrestricted timer API as untrusted code can not inspect the actual value.

Now, we instantiate the token hatch builder with a predicate that demands the exis-
tence of a Time token that is greater than some specific value.

TimeHatch : Time -> Type

TimeHatch t = (t' ** t <= t' = True) -> Labeled H Nat -> Labeled L Nat

As such, TimeHatch t can only be used after a specific point in time t has passed as
only then untrusted code will be able to satisfy the predicate.

timer : Labeled H Nat -> TimeHatch t -> DIO L ()

timer secret {t} timeHatch =

do time <- tick

case decEq (t <= time) True of

Yes prf =>

let declassified : Labeled L Nat = timeHatch (time ** prf) secret

...

No _ => ...

Authority-based hatches The Decentralized Labeling Model (DLM) [26] marks data
with a set of principals who owns the information. While executing a program, the
program is given authority, that is, it is authorized to act on behalf of some set of
principals. Declassification simply makes a copy of the released data and marks it with
the same set of principals but excludes the authorities.
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Similarly to Russo et al. [34], we adapt this idea such that it works on a security
lattice of Principals, assign authorities with security levels from the lattice, and let
authorities declassify information at that security level.

To model this, we define the abstract data type Authority with a data constructor
available only to trusted code so that having an instance of Authority s corresponds to
having the authority of the principal s. Notice how assignment of authorities to pieces
of code consequently is a part of the trusted code. Now, we instantiate the token hatch
builder with a predicate that demands the authority of s to declassify information at that
level.

authHatch : { l, l' : Principal }
-> (s ** (l = s, Authority s))

-> Labeled l a -> Labeled l' a
authHatch {l} = tokenHatchBuilder (\s => (l = s, Authority s))

That is, authHatch makes it possible to declassify information at level l to l' given an
instance of the Authority l data type.

Example Consider the scenario of an online dating service that has the distinguishing
feature of allowing its users to specify the visibility of their profiles at a fine-grained
level. To achieve this, the service allows users to provide a discovery agent that controls
their visibility. Consider a user, Bob, whose implementation of the discovery agent takes
as input his own profile and the profile of another user, say Alice. The agent returns
a possibly side-effectful computation that returns an option type indicating whether
Bob wants to be discovered by Alice. If that is the case, a profile is returned by the
computation with the information about Bob that he wants Alice to be able to see.
When Alice searches for candidate matches, her profile is run against the discovery
agents of all candidates and the result is added to her browsing queue.

To implement this dating service, we define the record type ProfileInfo A that
contains personal information related to principal A.

record ProfileInfo (A : Principal) where

constructor MkProfileInfo

name : Labeled A String

gender : Labeled A String

birthdate : Labeled A String

...

The interesting part of the dating service is the implementation of discovery agents.
Figure 6 presents a sample discovery agent that matches all profiles with the oppo-
site gender and only releases information about the name and gender. The discovery
agent demands the authority of A and takes as input two profiles a : ProfileInfo A
and b : ProfileInfo B. The resulting computation security level is B so to incorporate
information from a into the result, declassification is needed. This is achieved by pro-
viding authHatch with the authority proof of A. The discovery agent sampleDiscoverer
in Figure 6 unlabels B’s gender, declassifies and unlabels A’s gender and name, and
compares the two genders. If the genders match, a profile with type ProfileInfo B
only containing the name and gender of A is returned. Otherwise, Nothing is returned
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indicating that A does not want to be discovered. Notice that Refl is the constructor
for the built-in equality type in Idris and it is used to construct the proof of equality
between principals required by the hatch.

sampleDiscoverer : {A, B : Principal}

-> Authority A

-> (a : ProfileInfo A)

-> (b : ProfileInfo B)

-> DIO B (Maybe (ProfileInfo B))

sampleDiscoverer {A} {B} auth a b =

do bGender <- unlabel $ gender b

aGender <- unlabel $ authHatch (A ** (Refl, auth)) (gender a)

aName <- unlabel $ authHatch (A ** (Refl, auth)) (name a)

case decEq bGender aGender of

Yes _ => pure Nothing

No _ => pure (Just (MkProfileInfo aName aGender "" "" ""))

Fig. 6. A discovery agent that matches with all profiles of the opposite gender and only releases
the name and gender.

6 Soundness

Recent works [45, 46] present a mechanically-verified model of MAC and show pro-
gress-insensitive noninterference (PINI) for a sequential calculus. We use this work as a
starting point and discuss necessary modification in the following. Notice that this work
does not consider any declassification mechanisms and neither do we; we leave this as
future work.

The proof relies on the two-steps erasure technique, an extension of the term erasure
[20] technique that ensures that the same public output is produced if secrets are erased
before or after program execution. The technique relies on a type-driven erasure func-
tion ε`A on terms and configurations where `A denotes the attacker security level. A con-
figuration consists of an `-indexed compartmentalized store Σ and a term t. A configu-
ration 〈Σ, t〉 is erased by erasing t and by erasing Σ pointwise, i.e. ε`A (Σ) = λ`.ε`A (Σ(`)).
On terms, the function essentially rewrites data and computations above `A to a special
• value. The full definition of the erasure function is available in Appendix A.5. From
this definition, the definition of low-equivalence of configurations follows.

Definition 1. Let c1 and c2 be configurations. c1 and c2 are said to be `A-equivalent,
written c1 ≈`A c2, if and only if ε`A (c1) ≡ ε`A (c2).

After defining the erasure function, the noninterference theorem follows from showing
a single-step simulation relationship between the erasure function and a small-step re-
duction relation: erasing sensitive data from a configuration and then taking a step is
the same as first taking a step and then erasing sensitive data. This is the content of the
following proposition.
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Proposition 1. If c1 ≈`A c2, c1 → c′1, and c2 → c′2 then c′1 ≈`A c′2.

The main theorem follows by repeated applications of Proposition 1.

Theorem 1 (PINI). If c1 ≈`A c2, c1 ⇓ c′1, and c2 ⇓ c′2 then c′1 ≈`A c′2.

Both the statement and the proof of noninterference for DepSec are mostly similar to
the ones for MAC and available in Appendix B. Nevertheless, one has to be aware of a
few subtleties.

First, one has to realize that even though dependent types in a language like Idris
may depend on data, the data itself is not a part of a value of a dependent type. Recall
the type Vect n Nat of vectors of length n with components of type Nat and consider
the following program.

length : Vect n a -> Nat

length {n = n} xs = n

This example may lead one to believe that it is possible to extract data from a dependent
type. This is not the case. Both n and a are implicit arguments to the length function
that the compiler is able to infer. The actual type is

length : {n : Nat} -> {a : Type} -> Vect n a -> Nat

As a high-level dependently typed functional programming language, Idris is elabo-
rated to a low-level core language based on dependent type theory [9]. In the elabora-
tion process, such implicit arguments are made explicit when functions are defined and
inferred when functions are invoked. This means that in the underlying core language,
only explicit arguments are given. Our modeling given in Appendix A.1 reflects this
fact soundly.

Second, to model the extended expressiveness of DepSec, we extend both the se-
mantics and the type system with compile-time pure-term reduction and higher-order
dependent types. These definitions are standard (defined for Idris by Brady [9]) and
available in Appendix A.2 and A.3. Moreover, as types now become first-class terms,
the definition of ε`A has to be extended to cover the new kinds of terms. As before, prim-
itive types are unaffected by the erasure function, but dependent and indexed types,
such as the type DIO, have to be erased homomorphically, e.g., ε`A (DIO ` τ : Type)
, DIO ε`A (`) ε`A (τ). The intuition of why this is sensible comes from the observa-
tion that indexed dependent types considered as terms may contain values that will
have to be erased. This is purely a technicality of the proof. If defined otherwise,
the erasure function would not commute with capture-avoiding substitution on terms,
ε`A (t[v/x]) = ε`A (t)[ε`A (v)/x], which is vital for the remaining proof.

7 Related work

Security libraries The pioneering and formative work by Li and Zdancewic [19] shows
how arrows [17], a generalization of monads, can provide information-flow control
without runtime checks as a library in Haskell. Tsai et al. [44] further extend this work
to handle side-effects, concurrency, and heterogeneous labels. Russo et al. [34] elimi-
nate the need for arrows and implement the security library SecLib in Haskell based
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solely on monads. Rather than labeled values, this work introduces a monad which stat-
ically label side-effect free values. Furthermore, it presents combinators to dynamically
specify and enforce declassification policies that bear a resemblance to the policies that
DepSec are able to enforce statically.

The security library LIO [40, 41] dynamically enforces information-flow control in
both sequential and concurrent settings. Stefan et al. [39] extend the security guarantees
of this work to also cover exceptions. Similar to this work, Stefan et al. [41] present a
simple API for implementing secure conference reviewing systems in LIO with support
for data-dependent security policies.

Inspired by the design of SecLib and LIO, Russo [33] introduces the security li-
brary MAC. The library statically enforces information-flow control in the presence of
advanced features like exceptions, concurrency, and mutable data structures by exploit-
ing Haskell’s type system to impose flow constraints. Vassena and Russo [45], Vassena
et al. [46] show progress-insensitive noninterference for MAC in a sequential setting
and progress-sensitive noninterference in a concurrent setting, both using the two-steps
erasure technique.

The flow constraints enforcing confidentiality of read and write operations in DepSec
are identical to those of MAC. This means that the examples from MAC that do not
involve concurrency can be ported directly to DepSec. To the best of our knowledge,
data-dependent security policies like the one presented in Section 3 cannot be expressed
and enforced in MAC, unlike LIO that allows such policies to be enforced dynamically.
DepSec allows for such security policies to be enforced statically. Moreover, Russo [33]
does not consider declassification. To address the static limitations of MAC, HLIO [11]
takes a hybrid approach by exploiting advanced features in Haskell’s type-system like
singleton types and constraint polymorphism. Buiras et al. [11] are able to statically
enforce information-flow control while allowing selected security checks to be deferred
until run-time.

Dependent types for security Several works have considered the use of dependent types
to capture the nature of data-dependent security policies. Zheng and Myers [50, 51]
proposed the first dependent security type system for dealing with dynamic changes to
runtime security labels in the context of Jif [28], a full-fledged IFC-aware compiler for
Java programs, where similar to our work, operations on labels are modeled at the level
of types. Zhang et al. [49] use dependent types in a similar fashion for the design of a
hardware description language for timing-sensitive information-flow security.

A number of functional languages have been developed with dependent type sys-
tems and used to encode value-dependent information flow properties, e.g. Fine [42].
These approaches require the adoption of entirely new languages and compilers where
DepSec is embedded in an already existing language. Morgenstern and Licata [24] en-
code an authorization and IFC-aware programming language in Agda. However, their
encoding does not consider side-effects. Nanevski et al. [29] use dependent types to
verify information flow and access control policies in an interactive manner.

Lourenço and Caires [22] introduce the notion of dependent information-flow types
and propose a fine-grained type system; every value and function have an associated
security level. Their approach is different to the coarse-grained approach taken in our
work where only some computations and values have associated security labels. Rajani
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and Garg [32] show that both approaches are equally expressive for static IFC tech-
niques and Vassena et al. [47] show the same for dynamic IFC techniques.

Principles for Information Flow Bastys et al. [6] put forward a set of informal princi-
ples for information flow security definitions and enforcement mechanisms: attacker-
driven security, trust-aware enforcement, separation of policy annotations and code,
language-independence, justified abstraction, and permissiveness.

DepSec follows the principle of trust-aware enforcement, as we make clear the
boundary between the trusted and untrusted components in the program. Additionally,
the design of our declassification mechanism follows the principle of separation of pol-
icy annotations and code. The use of dependent types increases the permissiveness of
our enforcement as we discuss throughout the paper. While our approach is not fully
language-independent, we posit that the approach may be ported to other programming
languages with general-purpose dependent types.

Declassification enforcement Our hatch builders are reminiscent of downgrading poli-
cies of Li and Zdancewic [18]. For example, similar to them, DepSec’s declassification
policies naturally express the idea of delimited release [35] that provides explicit char-
acterization of the declassifying computation. Here, DepSec’s policies can express a
broad range of policies that can be expressed through predicates, an improvement over
simple expression-based enforcement mechanisms for delimited release [4, 5, 35].

An interesting point in the design of declassification policies is robust declassifica-
tion [48] that demands that untrusted components must not affect information release.
Qualified robustness [2, 27] generalizes this notion by giving untrusted code a limited
ability to affect information release through the introduction of an explicit endorsement
operation. Our approach is orthogonal to both notions of robustness as the intent is
to let the untrusted components declassify information but only under very controlled
circumstances while adhering to the security policy.

8 Conclusion and future work

In this paper, we have presented DepSec – a library for statically enforced information-
flow control in Idris. Through several case studies, we have showcased how the DepSec
primitives increase the expressiveness of state-of-the-art information-flow control li-
braries and how DepSec matches the expressiveness of a special-purpose dependent
information-flow type system on a key example. Moreover, the library allows program-
mers to implement policy-parameterized functions that abstract over the security policy
while retaining precise security levels.

By taking ideas from the literature and by exploiting dependent types, we have
shown powerful means of specifying statically enforced declassification policies related
to what, who, and when information is released. Specifically, we have introduced the
notion of predicate hatch builders and token hatch builders that rely on the fulfillment
of predicates and possession of tokens for declassification. We have also shown how the
ST monad [10] can be used to limit hatch usage statically.
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Finally, we have discussed the necessary means to show progress-insensitive non-
interference in a sequential setting for a dependently typed information-flow control
library like DepSec.

Future work There are several avenues for further work. Integrity is vital in many secu-
rity policies and is not considered in MAC nor DepSec. It will be interesting to take in-
tegrity and the presence of concurrency into the dependently typed setting and consider
internal and termination covert channels as well. It also remains to prove our declassi-
fication mechanisms sound. Here, attacker-centric epistemic security conditions [3, 15]
that intuitively express many declassification policies may be a good starting point.
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A The Calculus

This section formalizes DepSec as TTsec, a dependently typed call-by-value λ-calculus
extended with conditional expressions, references, unit, integer, and boolean values, as
well as higher order dependent types and security primitives.

A.1 Syntax

Figure 7 shows the formal syntax of the pure calculus underlying TTsec where meta
variables t, c, b, and τ denote terms, constants, binders, and types, respectively. The
syntax closely resembles the syntax of TT, the underlying calculus of Idris, but with
the addition of a conditional construct and base types Int, Bool, and (). We extend

Terms, t F c (constant)
| x (variable)
| b.t (binding)
| t t (application)
| if t then t else t (conditional)
| τ (type constructor)

Constants, cF i (integer literal)
| bool (boolean literal)
| () (unit literal)

Binders, b F λx : t (abstraction)
| ∀x : t (function space)

Types, τ F Type (type of types)
| Int (integer type)
| Bool (boolean type)
| () (unit type)

Fig. 7. Syntax of the core calculus underlying TTsec.

this standard calculus with the security primitives of DepSec. Figure 8 presents the
extensions to Figure 7 that forms the formal syntax of TTsec. We introduce the security
monad DIOv t as well as type DIOτ ` t and monadic operators pure t, t >>= t, and
plug t. We introduce a labeled value Labeledv t, a type Labeledτ ` t, and labeling
and unlabeling functions label t and unlabel t. As an example of a labeled resource
we introduce references as values Refn

v as well as means for allocating, reading, and
writing to references.

A.2 Operational semantics

Definition 2 (Small-step pure semantics). Let Term be the set of terms in TTsec and
let t1, t2 ∈ Term. The relation

t1 { t2 ⊆ Term × Term
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Terms, t, ` F . . .

| pure t (return operator)
| DIOv t (computation)
| Labeledv t (labeled value)
| Ref`v n (reference)
| t >>= t (bind)
| label t (labeling)
| unlabel t (unlabeling)
| plug t (DIO plugging)
| new` t (new reference)
| read t (read reference)
| write t t (write reference)

Types, τF . . .

| DIOτ ` t
| Labeledτ ` t
| Refτ ` t

Fig. 8. Syntax of TTsec.

denotes the small-step operational semantics of the TTsec calculus. The relation t1 { t2
denotes that t1 reduces to t2 in one reduction step according to the inference rules in
Figure 9.

We explicitly distinguish pure-term evaluation from top-level monadic-term evaluation.
The extended semantics is represented as the relation c1 −→ c2 introduced in Definition
4 which extends the pure semantics{ via Lift.

Definition 3 (Store). Let Label be a set of security labels. The function

Σ : Label→ List Term

denotes a store compartmentalized into isolated labeled segments, one for each label.
We write Σ(`)[n] to retrieve the nth cell in the `-memory and Σ(`)[n] F t for the store
obtained by performing the update Σ(`)[n 7→ t].

Definition 4 (Monadic-term semantics). Let 〈Σ, t〉 be a configuration consisting of a
store Σ and a term t ∈ Term. Let Conf be the set of all such configurations. The relation

c1 −→ c2 ⊆ Conf × Conf

denotes the monadic-term evaluation according to the inference rules of Figure 9.
〈Σ, t〉 −→∗ 〈Σ′, t′〉 denotes the reflexive transitive closure of −→, and we write 〈Σ, t〉 ⇓
〈Σ′, v〉 if and only if v is a value and 〈Σ, t〉 −→∗ 〈Σ′, v〉.

Note that we consider all non-reducible terms to be values and that constructors Labeledv,
DIOv , and Refv are not available to the user but only introduced in the semantics to
model the run-time value produced by e.g. label and pure.

Core calculus

App1
t1 { t′1

t1 t2 { t′1 t2

App2
t{ t′

v t{ v t′

Beta

(λx.t) v{ t[v/x]
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If1
t1 { t′1

if t1 then t2 else t3 { if t′1 then t2 else t3

If2

if True then t2 else t3 { t2

If3

if False then t2 else t3 { t3

DepSec (pure)

Bind1

DIOv t1 >>= t2 { t2 t1

Pure1
t{ t′

pure t{ pure t′

Pure2

pure v{ DIOv v

Label1
t{ t′

label t{ label t′

Label2

label v{ (Labeledv v)

Unlabel1
t{ t′

unlabel t{ unlabel t′

Unlabel2

unlabel (Labeledv v){ pure v

New1

t{ t′

new` t{ new` t′

Write1
t1 { t′1

write t1 t2 { write t′1 t2

Write2
t2 { t′2

write v t2 { write v t′2

Read1

t{ t′

read t{ read t′

DIO1

t{ t′

DIOτ t τ{ DIOτ t′ τ

DIO2

τ{ τ′

DIOτ v τ{ DIOτ v τ′

Labeled1

t{ t′

Labeledτ t τ{ Labeledτ t′ τ

Labeled2

τ{ τ′

Labeledτ v τ{ Labeledτ v τ′

Ref1
t{ t′

Refτ t τ{ Refτ t′ τ

Ref2
τ{ τ′

Refτ v τ{ Refτ v τ′

Forall1
τ{ τ′

∀x : τ.t{ ∀x : τ′.t

Forall2
t{ t′

∀x : τ.t{ ∀x : τ.t′

DepSec (monadic)
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Lift
t{ t′

〈Σ, t〉 −→ 〈Σ, t′〉

Bind2

〈Σ, t1〉 −→ 〈Σ′, t′1〉

〈Σ, t1 >>= t2〉 −→ 〈Σ′, t′1 >>= t2〉

Plug
〈Σ, t〉 ⇓ 〈Σ′, DIOv t′〉

〈Σ, plug t〉 −→ 〈Σ′, pure (Labeledv t′)〉

New2

|Σ(`)| = n

〈Σ, new` (Labeledv v)〉 −→ 〈Σ(`)[n]F v, pure (Ref`v n)〉

Write3

〈Σ, write (Ref`v n) (Labeledv v)〉 −→ 〈Σ(`)[n]F v, pure ()〉

Read2

〈Σ, read (Ref`v n)〉 −→ 〈Σ, pure
(
Labeledv Σ(`)[n]

)
〉

Fig. 9. Operational semantics of TTsec.

A.3 Typing rules

Similar to TT, type checking and the dynamic semantics are defined mutually since
evaluation relies on terms to be well-typed, and type checking relies on evaluation as
equivalence of terms or types is determined by comparing their normal forms. Compile-
time evaluation of TTsec is defined by the pure reductions rules in Figure 9 relative to a
context Γ. Conversion (') is the smallest equivalence relation closed under reduction,
that is, if Γ ` x ' y then x and y reduce to the same normal form.

The type inference rules for TTsec is presented in Figure 10. These rules use the
cumulativity (�) relation defined in Figure 11. In TT, the type of types, Type, is param-
eterized by a universe level (constructing an infinite hierarchy of universes) to prevent
Girard’s paradox. As universe levels are transparent to the user, this is not relevant for
our noninterference proof and we ignore this matter in the following. As for TT, we also
conjecture that TTsec respects usual properties such as type preservation and uniqueness
of typing at compile-time.

Core calculus

T-Type

Γ ` Type : Type

T-Const1

Γ ` i : Int

T-Const2

Γ ` bool : Bool

T-Const3

Γ ` () : ()
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T-Const4

Γ ` Int : Type

T-Const5

Γ ` Bool : Type

T-Var
(s : S ) ∈ Γ

Γ ` s : S

T-App
Γ ` f : ∀x : S .T Γ ` s : S

Γ ` f s : T [s/x]

T-Lam
Γ; x : S ` e : T Γ ` ∀x : S .T : Type

Γ ` λx : S .e : ∀x : S .T

T-Forall
Γ; x : S ` T : Type Γ ` S : Type

Γ ` ∀x : S .T : Type

T-IfThenElse
Γ ` t1 : Bool Γ; t1 ≡ True ` t2 : S Γ; t1 ≡ False ` t3 : S

Γ ` if t1 then t2 else t3 : S

T-Conv
Γ ` x : A Γ ` A′ : Type Γ ` A � A′

Γ ` x : A′

DepSec

T-DIO
Γ ` ` : Label Γ ` t : Type

Γ ` DIOτ ` t : Type

T-Labeled
Γ ` ` : Label Γ ` t : Type

Γ ` Labeledτ ` t : Type

T-Ref
Γ ` ` : Label Γ ` t : Type

Γ ` Refτ ` t : Type

T-Label
Γ ` ` : Label Γ ` s : S

Γ ` label s : Labeledτ ` S

T-Unlabel
`L v `H Γ ` s : Labeledτ `L S

Γ ` unlabel s : DIOτ `H S

T-Bind
Γ ` s : DIOτ ` S Γ ` t : S → DIOτ ` T

Γ ` s >>= t : DIOτ ` T

T-Pure
Γ ` s : S Γ ` ` : Label

Γ ` pure s : DIOτ ` S

T-Plug
`L v `H Γ ` s : DIOτ `H S

Γ ` plug s : DIOτ `L (Labeledτ `H S )

T-NewRef
`L v `M v `H Γ ` s : Labeledτ `M S

Γ ` new`H s : DIOτ `L (Refτ `H S )
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T-WriteRef
`L v `M v `H Γ ` s : Refτ `H S Γ ` t : Labeledτ `M S

Γ ` write s t : DIOτ `L ()

T-ReadRef
`L v `H Γ ` s : Refτ `H S

Γ ` read s : DIOτ `L (Labeledτ `H S )

Fig. 10. Typing rules for TTsec.

C-Conv
Γ ` S ' T

Γ ` S � T

C-Forall
Γ ` S 1 ' S 2 Γ; x : S 1 ` T1 � T2

Γ ` ∀x : S 1.T1 � ∀x : S 2.T2

Fig. 11. Cumulativity.

A.4 Example: Concatenating strings

This example illustrates the adequacy of the TTsec calculus. The concrete example im-
mitates the readTwoFiles function presented in Section 4. It takes two labeled strings
as input and returns the concatenated result of the content of these, labeled with the join
of the original labels. We assume having a well-typed string concatenation function ++

and a well-defined join function for which the following rules hold:

` : Label `′ : Label

` v join ` `′ join : ∀x, y : Label.Label

The implementation of a concatenation function for labeled strings TTsec is presented
in Figure 12.

concat : ∀`,`': Label.∀x:Labeledτ ` String.

∀y:Labeledτ `' String.DIOτ (join ` `') String
concat = λ`,`':Label.λx:Labeledτ ` String.λy:Labeledτ `' String.

unlabel x >>= (λux:DIOτ (join ` `') String.
unlabel y >>= (λuy:DIOτ (join ` `') String.
pure (ux ++ uy)))

Fig. 12. Concatenation of secure strings in TTsec.

concat is typed through multiple applications of T-Lam, which reduces the problem of
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typing concat to showing

Γ; (x : Labeledτ ` String); (y : Labeledτ `′ String)
` unlabel x . . . pure (ux ++uy) : DIOτ (join ` `′) String

and

Γ `∀x : Labeledτ ` String .
∀y : Labeledτ `′ String . DIOτ (join ` `′) String : Type.

The typing of the actual expression with the return type, DIOτ (join ` `′) String,
continues by T-Bind. This judgment requires that

Γ; (`, `′ : Label); (x : Labeledτ ` String) ` unlabel x : DIOτ (join ` `′) String

and that the rest of the expression in fact has a function type which takes such an input.
As this goes by rules already presented we continue with the typing of unlabel x. This
follows by T-Unlabel which can be used by the assumption on join and by T-Var.

Showing that the proposed type is a type follows by T-Forall, T-Var, T-App, and
the assumption on join.

A.5 Erasure

Definition 5 (Erasure function on terms). Let `A be the attacker’s security level. The
function

ε`A : Term→ Term

denotes the erasure function on terms where values and primitive types like True, Int,
etc. is unaffected but otherwise defined by:

ε`A

(
•
)
, •

ε`A

(
λx.t

)
, λx.ε`A

(
t
)

ε`A

(
t1 t2 : τ

)
,

• if τ = DIOτ ` τ
′ ∧ ` @ `A

ε`A

(
t1
)
ε`A

(
t2
)

otherwise

ε`A

(
if t1 then t2 else t3 : τ

)
,

• if τ = DIOτ ` τ
′ ∧ ` @ `A

if ε`A

(
t1
)
then ε`A

(
t2
)
else ε`A

(
t3
)

otherwise

ε`A

(
pure t : DIOτ ` τ

)
,

• if ` @ `A

pure ε`A

(
t
)

otherwise

ε`A

(
DIOv t : DIOτ ` τ

)
,

• if ` @ `A

DIOv ε`A

(
t
)

otherwise

ε`A

(
t1 >>= t2 : DIOτ ` τ

)
,

• if ` @ `A

ε`A

(
t1
)
>>= ε`A

(
t2
)

otherwise
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ε`A

(
Labeledv t : Labeledτ ` τ

)
,

Labeledv • if ` @ `A

Labeledv ε`A

(
t
)

otherwise

ε`A

(
label t : Labeledτ ` τ

)
,

label • if ` @ `A

label ε`A

(
t
)

otherwise

ε`A

(
unlabel t : DIOτ ` τ

)
,

• if ` @ `A

unlabel ε`A

(
t
)

otherwise

ε`A

(
Refn

v : Refτ ` τ
)
,

Ref•v if ` @ `A

Refn
v otherwise

ε`A

(
new`

′

t : DIOτ ` (Refτ `′ τ)
)
,

• if ` @ `A

new`
′

ε`A

(
t
)

otherwise

ε`A

(
write t1 t2 : DIOτ ` τ

)
,

• if ` @ `A

write ε`A

(
t1
)
ε`A

(
t2
)

otherwise

ε`A

(
read t : DIOτ ` (Labeledτ `′ τ)

)
,


• if ` @ `A

read • if `′ @ `A

read ε`A

(
t
)

otherwise

ε`A

(
plug t : DIOτ ` (Labeledτ `′ τ)

)
,


• if ` @ `A

plug• ε`A

(
t
)

if `′ @ `A

plug ε`A

(
t
)

otherwise

ε`A

(
plug• t : DIOτ ` (Labeledτ `′ τ)

)
,

• if ` @ `A

plug• ε`A

(
t
)

otherwise

ε`A

(
DIOτ ` τ

)
, DIOτ ε`A

(
`
)
ε`A

(
τ
)

ε`A

(
Labeledτ ` τ

)
, Labeledτ ε`A

(
`
)
ε`A

(
τ
)

ε`A

(
Refτ ` τ

)
, Refτ ε`A

(
`
)
ε`A

(
τ
)

ε`A

(
∀x : τ.t

)
, ∀x : ε`A

(
τ
)
.ε`A

(
t
)

In most cases the definition of the erasure function is straightforward as we simply
collapse sensitive information and computations to • if they are above the security level
of the attacker and otherwise apply the function homomorphically. In one particular
case this idea fails, namely the erasure of the term plug t.

Consider plug t : DIOτ ` (Labeledτ `′ τ) for some `, `′, and τ. If the adversary is
not allowed to see `, i.e. ` @ `A, the computation should not be visible to the adversary
and therefore it should be completely collapsed into •. Unfortunately, this approach of
rewriting entire computations fails if ` v `A and `′ @ `A as it would not be possible to
show that 〈ε`A

(
Σ
)
, plug •〉 −→ 〈ε`A

(
Σ′

)
, pure Labeledv •〉 as 〈Σ, •〉 6⇓ 〈Σ′, •〉 since

•{ • and it does therefore not have a normal form. Hence, we need a context-sensitive
erasure function as the idea about simply erasing computations above the level of an
attacker is too simple. To handle this case soundly we make use of two-steps erasure
that works by introducing an extra semantic step for plug• introduced by the erasure
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function. The extension is presented in Figure 13. Note that this, from an attackers point
of view, still looks exactly like one would expect when erasing data and this is therefore
purely a technicality of the proof.

Hole

•{ •

Plug•

plug• t{ pure (Labeledv •)

Fig. 13. Operational semantics of TTsec•: extensions to TTsec.

Extra typing rules for both • and plug• are also introduced as presented in Fig-
ure 14.

T-Hole
Γ ` τ : Type

Γ ` • : τ

T-Plug•
`L v `H Γ ` s : DIOτ `H S

Γ ` plug• s : DIOτ `L (Labeledτ `H S )

Fig. 14. Typing rules for TTsec•: extensions to TTsec.

The definition of ε`A on stores is straightforward as we have a compartmentalized
memory. If the a store is erased up to a security level `A then all levels above this should
simply be collapsed entirely.

Definition 6 (Erasure function on configurations). Let `A be the attacker’s security
level. The function

ε`A : Conf→ Conf•

denotes the erasure function for configurations defined by

ε`A

(
〈Σ, t : DIOτ ` τ〉

)
,

〈ε`A

(
Σ
)
, •〉 if ` @ `A

〈ε`A

(
Σ
)
, ε`A

(
t
)
〉 otherwise

where the store Σ is erased pointwise at each security level and in every cell, i.e.
ε`A

(
Σ
)

= λ`.ε`A

(
Σ(`)

)
, where

ε`A

(
Σ(`)

)
,

• if ` @ `A

map ε`A Σ(`) otherwise

Note that writing to an erased cell yields no update, i.e. (Σ(`)[•] F t) , Σ(`), and
reading from an erased compartment yields •, i.e. •[n] , •.

Definition 7 (`A-equivalence). Let c1, c2 ∈ Conf. c1 and c2 are said to be indistin-
guishable from security level `A, written c1 ≈`A c2, if and only if ε`A

(
c1

)
and ε`A

(
c2

)
are

structurally equivalent, written ε`A

(
c1

)
≡ ε`A

(
c2

)
.
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B Results

Lemma 1 (Erasure of substitution). Let t, v ∈ Term. Then ε`A

(
t[v/x]

)
≡ ε`A

(
t
)
[ε`A

(
v
)
/x].

Proof. The statement follows by case splitting on t and v and the definition of ε`A .

Lemma 2 (Distributivity on pure term reduction). Let t1, t2 ∈ Term. If t1 { t2 then
ε`A

(
t1
)
{ ε`A

(
t2
)
.

Proof. The proof goes by structural induction in the derivation of t1 { t2.

App1: Assume t1 t2 { t′1 t2. If t1 t2 has type DIOτ ` τ′ and ` @ `A, the
statement follows from the definition of ε`A and Hole. Otherwise, t1 {
t′1 holds by App1 and by the induction hypothesis ε`A

(
t1
)
{ ε`A

(
t′1
)
. By

App1 and definition of ε`A it holds that ε`A

(
t1 t2

)
{ ε`A

(
t′1 t2

)
.

App2: The argument is identical to the App1 case.
Beta: Assume (λx.t) v{ t[v/x]. By Beta, λx.ε`A

(
t
)
ε`A

(
v
)
{ ε`A

(
t
)
[ε`A

(
v
)
/x].

By definition of ε`A and Lemma 1 then ε`A

(
(λx.t) v

)
{ ε`A

(
t[v/x]

)
.

If1: The argument is identical to the App1 case.
If2 and If3: If t1 and t2 have type DIOτ ` τ′ and ` @ `A, the statement follows from

the definition of ε`A and Hole. Otherwise, the statement follows directly
by the definition ε`A and Ifi.

Bind1: Assume pure t1 >>= t2 { t2 t1. As we assume well-typed terms,
pure t1 >>= t2 has type DIOτ ` τ for some ` and τ. If ` @ `A the
statement follows from the definition of ε`A and Hole. Otherwise, the
statement follows from Bind-Pure and the definition of ε`A .

Pure1: Assume pure t { pure t′. As we assume well-typed terms, pure t
and pure t′ have type DIOτ ` τ for some ` and τ. If ` v `A then the
statement follows from the induction hypothesis, the definition of ε`A

and Pure1. If ` @ `A then the statement follows from the definition ε`A

and Hole.
Pure2: Assume pure v { DIOv v. As we assume well-typed terms, pure v

and DIOv v have type DIOτ ` τ for some ` and τ. If ` v `A then the
statement follows from the definition of ε`A and Pure2. If ` @ `A then
the statement follows from the definition ε`A and Hole.

Label1: Assume label t{ label t′. As we assume well-typed terms, label t
and label t′ have type Labeledτ ` τ for some ` and τ. If ` v `A then
the statement follows from the induction hypothesis, the definition of
ε`A , and Label1. If ` @ `A then the statement follows from the definition
ε`A Hole and Label1.

Label2: Assume label t { Labeledv t. As we assume well-typed terms,
label t and Labeledv t have type Labeledτ ` τ for some `, `′, and
τ. If ` @ `A the statement follows from the definition of ε`A Hole and
Label1. Otherwise the statement follows by Label2, the definition of ε`A

and the induction hypothesis.
Unlabel1: Assume unlabel t { unlabel t′. As we assume well-typed terms,

unlabel t and unlabel t′ have type DIOτ ` τ for some ` and τ. If ` @
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`A the statement follows from the definition of ε`A and Hole. Otherwise,
the statement follows from the induction hypothesis, Unlabel1, and the
definition of ε`A .

Unlabel2: Assume unlabel (Labeledv t) { pure t. As we assume well-typed
terms, unlabel (Labeledv t) and pure t have type DIOτ ` τ where
Labeledv t have type Labeledτ `′ τ such that `′ v `. If ` @ `A the
statement follows from the definition of ε`A and Hole. If ` v `A then by
transitivity of the partial ordering `′ v `A holds and the statement then
follows by Unlabel2 and the definition of ε`A .

New1: Assume new` t { new` t′. As we assume well-typed terms, new` t
and new` t′ have type DIOτ ` τ for some ` and τ. If ` @ `A then the
statements follows from the definition of ε`A and Hole. If ` v `A the
statement follows from the induction hypothesis, the definition of ε`A ,
and New1.

Write1: Assume write t1 t2 { write t′1 t2. As we assume well-typed terms,
write t1 t2 and write t′1 t2 have type DIOτ ` () and t2 has type
Labeledτ `′ τ. If ` @ `A the statement follows from the definition
of ε`A and Hole. If ` v `A then the statement follows by the induction
hypothesis, Write1, and the definition of ε`A .

Write2: The argument is identical to the Write1 case.
Read1: Assume read t{ read t′. As we assume well-typed terms read t and

read t′ have type DIOτ `′ (Labeledτ ` τ). If `′ @ `A the statement
follows from the definition of ε`A and Hole. Otherwise, if `′ v `A then
consider whether ` v `A holds. If ` @ `A the statement follows by
Read1 and Hole. If ` v `A then the statement follows by the induction
hypothesis, Read1, and the definition of ε`A .

DIOi, Labeledi,
Refi, Foralli: In all cases, the statement follows directly from the induction hypothe-

sis, the definition of ε`A , and the inference rules.
Plug•: Assume plug• t { pure (Labeledv •). As we assume well-typed

terms, plug• t has type DIOτ ` (Labeledτ `′ τ). Consider whether
`′ v `A. In both cases, the statement follows by the definition ε`A and
Plug•.

Hole: The statement follows directly from the definition of ε`A and Hole.

Lemma 3 (Erasure of a computation). Let t ∈ Term. If t has type DIOτ ` τ and ` @ `A

then ε`A

(
t
)
≡ •.

Proof. The statement follows directly by case splitting on t and the definition of ε`A .

Lemma 4 (Single step erased store equivalence). Let c1 = 〈Σ1, t1〉 and c2 = 〈Σ2, t2〉.
If t1 and t2 have type DIOτ ` τ, ` @ `A, and c1 −→ c2 then ε`A

(
Σ1

)
≡ ε`A

(
Σ2

)
.

Proof. The proof goes by case splitting in the derivation of c1 −→ c2.

Plug: Assume 〈Σ, plug t〉 −→ 〈Σ′, pure (Labeledv t′)〉. As we assume well-
typed terms, t has type DIOτ `′ τ′ for some `′ and τ′ where ` v `′. By
transitivity of v it follows that `′ @ `A and then the statement follows
by Lemma 5 as t is structurally smaller than plug t.
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New2: Assume 〈Σ, new`
′

(Labeledv t)〉 −→ 〈Σ(`′)[n] F t, pure (Ref`
′

v n)〉.
As we assume well-typed terms, new`

′

(Labeledv t) and pure (Ref`
′

v n)
have type DIOτ ` (Refτ `′ τ) where ` v `′. By transitivity of v it
follows that `′ @ `A. Note that the only memory compartment changed
is the one of `′ and as writing to an erased cell makes no update the
statement follows.

Write3: The argument is identical to the New case.

The remaining cases does not change the store and the statement follows immediately.

Lemma 5 (Multi-step erased store equivalence). Let c1 = 〈Σ1, t1〉 and c2 = 〈Σ2, t2〉.
If t1 and t2 have type DIOτ ` τ, ` @ `A, and c1 −→

∗ c2 then ε`A

(
Σ1

)
≡ ε`A

(
Σ2

)
.

Proof. The statement follows from repeated applications of Lemma 4.

Lemma 6. Let Σ be a store, n ∈ N ∪ {•}, and t ∈ Term. Then ε`A

(
Σ(`)[n] F t

)
≡

ε`A

(
Σ
)
(`)[n]F ε`A

(
t
)
.

Proof. Note that the erasure of a store erases each compartment in both the old and the
updated store. Only the Σ(`) compartment is changed, hence the remaining compart-
ments are preserved by definition. It remains to show that the updated compartments
are equivalent. Let the updated store Σ(`)[n] F t be denoted by Σ′. If ` v `A then
ε`A

(
Σ′(`)

)
= map ε`A Σ

′(`) cf. the definition of ε`A and hence the statement follows
from properties of map. If ` @ `A then ε`A

(
Σ′(`)

)
≡ • and the statement follows as

updating an erased cell yields no update.

Lemma 7. Let Σ be a store and n ∈ N. If ` v `A then ε`A

(
Σ(`)[n]

)
≡ ε`A

(
Σ
)
(`)[n].

Proof. The statements follows from the definition of ε`A and properties of map.

Proposition 2 (Distributivity of ε`A over −→). Let c1, c2 ∈ Conf. If c1 −→ c2 then
ε`A

(
c1

)
−→ ε`A

(
c2

)
.

Proof. Let c1 = 〈Σ, t〉 and c2 = 〈Σ′, t′〉. The proof goes by structural induction in the
derivation of c1 −→ c2.

Lift: Note Σ = Σ′. Necessarily, t { t′ must hold. By Lemma 2 it holds
ε`A

(
t
)
{ ε`A

(
t′
)

and by Lift and the definition of ε`A on configurations
the statement follows.

Note that in the remaining cases t and t′ necessarily have type DIOτ ` τ as we assume
well-typed terms. If ` @ `A the statement in all cases follows by the definition of ε`A ,
Lemma 3, Lemma 4, Lift, and Hole. Now, assume ` v `A.

Bind2: Assume 〈Σ, t1 >>= t2〉 −→ 〈Σ′, t′1 >>= t2〉. The statement follows by
Bind2, the induction hypothesis and the definition of ε`A .
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Plug: Assume 〈Σ, plug t〉 −→ 〈Σ′, pure (Labeledv t′)〉. As we assume
well-typed terms, t has type DIOτ `′ τ′ for some `′ and τ′. From
Plug it holds that 〈Σ, t〉 ⇓ 〈Σ′, DIOv t′〉. If `′ v `A, cf. Lemma 9
and that t is structurally smaller than plug t, it follows ε`A

(
〈Σ, t〉

)
⇓

ε`A

(
〈Σ′, DIOv t′〉

)
, and from the definition of ε`A and Plug the state-

ment holds. If `′ @ `A, it follows from Lemma 5 that ε`A

(
Σ
)
≡

ε`A

(
Σ′

)
, and using Lift, the definition of ε`A and Plug• the state-

ment follows.
New2: Assume 〈Σ, new`

′′

(Labeledv t)〉 −→ 〈Σ(`′′)[n]F t, pure (Ref`
′′

v n)〉.
As we assume well-typed terms, terms new`

′′

(Labeledv t) and
pure Ref`

′′

v n have type DIOτ ` (Refτ `′′ τ), and the term Labeledv t
has type Labeledτ `′ τ where ` v `′ v `′′. If `′′ v `A then by tran-
sitivity `′ v `A. From the definition of ε`A it follows ε`A

(
Σ(`′′)

)
=

map ε`A Σ(`′′) and hence |ε`A

(
Σ(`′′)

)
| = |Σ(`′′)| = n. From Lemma

6, the definition of ε`A , and New2 the statement follows. If `′′ @ `A

then then from the definition of ε`A it follows ε`A

(
Σ(`′′)

)
≡ • and the

size of an erased label segment is also erased, hence |ε`A

(
Σ(`′′)

)
| =

| • | = •. Consider whether `′ v `A. In both cases the statement
follows from Lemma 6, the definition of ε`A , and New2.

Write3: Assume

〈Σ, write (Ref`
′

v n) (Labeledv t)〉 −→ 〈Σ(`′)[n]F t, pure ()〉.

As we assume well-typed terms, Ref`
′

v n has type Refτ `′ τ and
Labeledv t has type Labeledτ `′′ τ for some `′, `′′, and τ where
`′′ v `′. If `′ v `A then by transitivity `′′ v `A and hence

write (Ref`
′

v n) (Labeledv ε`A

(
t
)
)

≡ write ε`A

(
Ref`

′

v n
)
ε`A

(
Labeledv t

)
by definition of ε`A . The statement now follows from Lemma 6,
Write3, and the definition of ε`A . If `′ @ `A then consider whether
`′′ v `A. In either case, the statement follows from Lemma 6, Write3,
and the definition of ε`A .

Read2: Assume 〈Σ, read (Ref`v n)〉 −→ 〈Σ, pure
(
Labeledv Σ(`)[n]

)
〉.

As we assume well-typed terms, Ref`v n has type Refτ ` τ and
pure (Labeledv Σ(`)[n]) has type DIOτ `′ (Labeledτ ` τ) for
some `, `′ and τ where `′ v `. If ` v `A then by transitivity `′ v `A

and the statement follows from Lemma 7, Read2, and the definition
of ε`A . If ` @ `A the statement follows by the fact that reading from
an erased compartment yields •, the definition of ε`A , and Read2.

Lemma 8 (Distributivity of ε`A over −→∗). Let c1, c2 ∈ Conf. If c1 −→
∗ c2 then

ε`A

(
c1

)
−→∗ ε`A

(
c2

)
.

Proof. The statement follows from repeated applications of Proposition 2.
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Lemma 9 (Distributivity of ε`A over ⇓). Let c1, c2 ∈ Conf. If c1 ⇓ c2 then ε`A

(
c1

)
⇓

ε`A

(
c2

)
.

Proof. The statement follows directly from Lemma 8.

Lemma 10 (Determinacy of pure reductions). Let t1, t2, t3 ∈ Term. If t1 { t2 and
t1 { t3 then t2 ≡ t3.

Proof. The proof goes by structural induction in the derivation of t1 { t2 and t1 { t3.

Proposition 3 (Single step determinacy). Let c1, c2, c3 ∈ Conf. If c1 −→ c2 and c1 −→

c3 then c2 ≡ c3.

Proof. The proof goes by structural induction in the derivation of c1 −→ c2 and c1 −→

c3. Note that both c1 −→ c2 and c1 −→ c3 have to have been derived from the same
inference rule, syntactically decidable from c1.

Lift: The statement follows by Lemma 10.
Plug: Assume 〈Σ1, plug t1〉 −→ 〈Σ2, pure (Labeledv t2)〉 and 〈Σ1, plug t1〉 −→

〈Σ3, pure (Labeledv t3)〉. The statement follows from Lemma 11 as t1
is structurally smaller than plug t1.

In the remaining cases the statement follows by standard structural induction.

Lemma 11 (Big step determinacy). Let c1, c2, c3 ∈ Conf. If c1 ⇓ c2 and c1 ⇓ c3 then
c2 ≡ c3.

Proof. The statement follows from repeated applications of Proposition 3.

Proposition 4 (Single step ≈`A preservation). Let c1, c′1, c2, c′2 ∈ Conf. If c1 ≈`A c2,
c1 −→ c′1, and c2 −→ c′2 then c′1 ≈`A c′2.

Proof. Proposition 2 states that ε`A

(
c1

)
−→ ε`A

(
c′1

)
and ε`A

(
c2

)
−→ ε`A

(
c′2

)
. From

Definition 7 it is known that ε`A

(
c1

)
≡ ε`A

(
c2

)
and from Proposition 3 it follows that

ε`A

(
c′1

)
≡ ε`A

(
c′2

)
. Hence c′1 ≈`A c′2.

Theorem 2 (Progress-insensitive noninterference). Let c1, c′1, c2, c′2 ∈ Conf. If c1 ≈`A

c2, c1 ⇓ c′1, and c2 ⇓ c′2 then c′1 ≈`A c′2.

Proof. The statement follows from repeated application of Proposition 4.

C DepSec
DIO.idr

1 module DepSec.DIO

2

3 % access public export

4

5 ||| Security Monad

6 ||| @ l security label of wrapped value
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7 ||| @ valueType type of wrapped value

8 data DIO : l

9 -> (valueType : Type)

10 -> Type where

11 ||| TCB

12 MkDIO : IO valueType -> DIO l valueType

13

14 ||| Executes secure computation

15 ||| TCB

16 ||| @ dio secure computation

17 run : (dio : DIO l a) -> IO a

18 run (MkDIO m) = m

19

20 ||| Lifts arbitrary IO monad into security monad

21 ||| TCB

22 ||| @ io computation

23 lift : (io : IO a) -> DIO l a

24 lift = MkDIO

25

26 Functor (DIO l) where

27 map f (MkDIO io) = MkDIO (map f io)

28

29 Applicative (DIO l) where

30 pure = MkDIO . pure

31 (<*>) (MkDIO f) (MkDIO a) = MkDIO (f <*> a)

32

33 Monad (DIO l) where

34 (>>=) (MkDIO a) f = MkDIO (a >>= run . f)

Labeled.idr
1 module DepSec.Labeled

2

3 import public DepSec.DIO

4 import public DepSec.Poset

5

6 % access public export

7

8 ||| Labeled value

9 ||| @ label label

10 ||| @ valueType type of labeled value

11 data Labeled : (label : labelType)

12 -> (valueType : Type)

13 -> Type where

14 ||| TCB

15 MkLabeled : valueType -> Labeled label valueType

16

17 ||| Label values

18 ||| @ value value to label

19 label : Poset labelType

20 => {l : labelType}
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21 -> (value : a)

22 -> Labeled l a

23 label = MkLabeled

24

25 ||| Unlabel values

26 ||| @ flow evidence that l may flow to l'
27 ||| @ labeled labeled value to unlabel

28 unlabel : Poset labelType

29 => {l,l' : labelType}
30 -> {auto flow : l `leq` l'}
31 -> (labeled : Labeled l a)

32 -> DIO l' a
33 unlabel (MkLabeled val) = pure val

34

35 ||| Upgrade the security level of a labeled value

36 ||| @ flow evidence that l may flow to l'
37 ||| @ labeled labeled value to relabel

38 relabel : Poset labelType

39 => {l, l' : labelType}
40 -> {auto flow : l `leq` l'}
41 -> (labeled : Labeled l a)

42 -> Labeled l' a
43 relabel (MkLabeled x) = MkLabeled x

44

45 unlabel' : Poset labelType
46 => {l,l' : labelType}
47 -> {auto flow : l `leq` l'}
48 -> (labeled : Labeled l a)

49 -> DIO l' (c : a ** label c = labeled)
50 unlabel' (MkLabeled x) = pure (x ** Refl)
51

52 ||| Plug a secure computation into a less secure computation

53 ||| @ flow evidence that l may flow to l'
54 ||| @ dio secure computation to plug into insecure computation

55 plug : Poset labelType

56 => {l,l' : labelType}
57 -> (dio : DIO l' a)
58 -> {auto flow : l `leq` l'}
59 -> DIO l (Labeled l' a)
60 plug dio = lift . run $ dio >>= pure . MkLabeled

Poset.idr
1 module DepSec.Poset

2

3 % access public export

4 % default total

5 % hide Prelude.Monad.join

6

7 ||| Verified partial ordering

8 interface Poset a where
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9 leq : a -> a -> Type

10 reflexive : (x : a) -> x `leq` x
11 antisymmetric : (x, y : a) -> x `leq` y -> y `leq` x -> x = y
12 transitive : (x, y, z : a) -> x `leq` y -> y `leq` z -> x `leq` z

Lattice.idr
1 module DepSec.Lattice

2

3 import public DepSec.Poset

4

5 % access public export

6 % hide Prelude.Monad.join

7 % default total

8

9 ||| Verified join semilattice

10 interface JoinSemilattice a where

11 join : a -> a -> a

12 joinAssociative : (x, y, z : a)

13 -> x `join` (y `join` z) = (x `join` y) `join` z
14 joinCommutative : (x, y : a) -> x `join` y = y `join` x
15 joinIdempotent : (x : a) -> x `join` x = x
16

17 ||| A well defined join induces a partial ordering.

18 implementation JoinSemilattice a => Poset a where

19 leq x y = (x `join` y = y)
20 reflexive = joinIdempotent

21 antisymmetric x y lexy leyx =

22 rewrite sym $ lexy in

23 rewrite joinCommutative x y in

24 rewrite sym $ leyx in Refl

25 transitive x y z lexy leyx =

26 rewrite sym $ leyx in

27 rewrite joinAssociative x y z in

28 rewrite sym $ lexy in Refl

29

30 ||| A join-semilattice with an identity element (the lattices' bottom)
31 ||| of the join operation.

32 interface JoinSemilattice a => BoundedJoinSemilattice a where

33 Bottom : a

34 bottomUnitaryElement : (e : a) -> e `join` Bottom = e

Ref.idr
1 module DepSec.Ref

2

3 import public DepSec.Labeled

4 import public DepSec.DIO

5 import Data.IORef

6

7 % access export



A Dependently Typed Library for Static Information-Flow Control in Idris 43

8

9 ||| Data type for secure references.

10 data SecRef : (l : labelType) -> (valueType : Type) -> Type where

11 |||TCB

12 MkSecRef : (ref : IORef a) -> SecRef l a

13

14 ||| Creating a reference to a labeled value.

15 ||| @ flow evidence that l may flow to l'
16 ||| @ flow' evidence that l' may flow to l''
17 ||| @ value The initial value for the reference.

18 newRef : Poset labelType

19 => {l, l', l'' : labelType}
20 -> {auto flow : l `leq` l'}
21 -> {auto flow' : l' `leq` l''}
22 -> (value : Labeled l' a)
23 -> DIO l (SecRef l'' a)
24 newRef (MkLabeled v)

25 = lift $ newIORef v >>= pure . MkSecRef

26

27 ||| Reading a secure reference.

28 ||| @ flow evidence that l may flow to l'
29 ||| @ ref The reference which we wish to read.

30 readRef : Poset labelType

31 => {l, l' : labelType}
32 -> {auto flow : l `leq` l'}
33 -> (ref : SecRef l' a)
34 -> DIO l (Labeled l' a)
35 readRef (MkSecRef ioRef)

36 = lift $ map MkLabeled $ readIORef ioRef

37

38 ||| Wrting a labeled value to a secure reference.

39 ||| @ flow evidence that l may flow to l'
40 ||| @ flow' evidence that l' may flow to l''
41 ||| @ ref The reference which we wish to write to.

42 ||| @ content The content which we wish too read.

43 writeRef : Poset labelType

44 => {l, l', l'' : labelType}
45 -> {auto flow : l `leq` l'}
46 -> {auto flow' : l' `leq` l''}
47 -> (ref : SecRef l'' a)
48 -> (content : Labeled l' a)
49 -> DIO l ()

50 writeRef (MkSecRef ioRef) (MkLabeled content)

51 = lift $ writeIORef ioRef content

File.idr
1 module DepSec.File

2

3 import public DepSec.DIO

4 import public DepSec.Labeled
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5

6 %access export

7

8 ||| Secure file

9 data SecFile : {label : Type} -> (l : label) -> Type where

10 ||| TCB

11 MkSecFile : (path : String) -> SecFile l

12

13 ||| Make a secure file from string

14 ||| TCB

15 ||| @ path path to file

16 makeFile : (path : String) -> SecFile l

17 makeFile = MkSecFile

18

19 ||| Read a secure file

20 ||| @ flow evidence that l may flow to l'
21 ||| @ file secure file to read

22 readFile : Poset labelType

23 => {l,l' : labelType}
24 -> {auto flow : l `leq` l'}
25 -> (file : SecFile l')
26 -> DIO l (Labeled l' (Either FileError String))
27 readFile (MkSecFile path) = lift $ map MkLabeled $ readFile path

28

29 ||| Write to a secure file

30 ||| @ file secure file to write to

31 ||| @ flow evidence that l may flow to l'
32 ||| @ flow' evidence that l' may flow to l''
33 ||| @ content labeled content to write

34 writeFile : Poset labelType

35 => {l,l',l'' : labelType}
36 -> {auto flow : l `leq` l'}
37 -> (file : SecFile l'')
38 -> {auto flow' : l' `leq` l''}
39 -> (content : Labeled l' String)
40 -> DIO l (Labeled l'' (Either FileError ()))
41 writeFile (MkSecFile path) (MkLabeled content)

42 = lift $ map MkLabeled $ writeFile path content


